
Mr W'" Ff (fPY &.

AD-A203 907

A KINEMATIC STD OF THE MEERLiN 6s00 ROBOT
AND THE UTAH/MT DEXTEROUS HAND AND A
SIMULATION OF THEIR COMBINED BEHAVIOR

Ranvir Singh Solanki
Kuldip S. Rattan
Wright State University
3640 Colonel Glenn Highway
Fairborn, OH 45324

September 1988 DTIC
IIELECTE I

Final Report for the Period April 1987 to September 1988 S4J AN 19890

Approved for public release; distribution is unlimited.

HARRY G. ARMSTRONG AEROSPACE MEDICAL RESEARCH LABORATORY
HUMAN SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6 1 23 1 88

......... 23 188a t I IIII

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a
definitely related Government procurement operation, the Government thereby incurs no responsibility
nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or
in any way supplied the said drawings, specifications, or other data, is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any other person or corporation, or
conveying any rights or permission to manufacture, use, or sell any patented invention that may in any
way be related thereto.

Please do not request copies of this report from the Armstrong Aerospace Medical
Research Laboratory. Additional covies may h trchasee rom:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Technical Information
Center should direct requests for copies of this report to:

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

AAMRL-TR-88-059

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including
foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

JAMES W. BRINKLEY
Acting Director
Biodynamics & Bioengineering Division
Harry G. Armstrong Aerospace Medical Research Laboratory

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMS No.070Oiu

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED

2s. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AAMRL-TR-88-059

6e. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION/3E I(If applicable)
AAMP.L/BBM I (fapie

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

Wright-Patterson AFB OH 45433-6573

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (C/ty, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK " WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.
61102F 2312 V6 02

11. TITLE (Include Security Classification)
A KINEMATIC STUDY OF THE MERLIN 6500 ROBOT AND THE UTAH/MIT DEXTEROUS HAND AND A
SIMULATION OF THEIR COMBINED BEHAVIOR (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)
Ranvir Singh Solanki and Kuldip S. Rattan, Wright State University

13a. TYPE OF REPORT I13b. TIME COVERED 114. DATE OF REPORT (Year, Month Day) 115. PAGE COUNT
Summary I FROM Apr 87 TO Sep 881 1988, September 103

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Robotics, Kinematics

05 08
06 02 1

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This report deals with the kinematics of the advanced, dexterous, four-fingered, sixteen
jointed end-effector system called the UTAH/MIT hand and the industrial type six jointed
MERLIN 6500 manipulator. The methodology of kimematic analysis, the direct and inverse
kinematics of the MERLIN manipulator and the direct kinematics of the UTAH/MIT hand are
presented. A computer graphical simulation program for the two systems, when combined
together, is also carried out in this study. Certain key issues involved in the
development of kinematics for manipulator systems with dexterous end-effectors are also
discussed. Ice)

-

20. DISTRIBUTION I AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
IMUNCLASSIFIED/LJNLIMITED U SAME AS RPT. El DTIC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. LOFFICE SYMBOL
Into Kalevs (513) 255-3665 1 A./

DD Form 1473. JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

i

ACKNOVLEDGEUNT

This project was supported by the lodeling and Analysis Branch of

the Armstrong Aerospace ledical Research Laboratory (AARL), Wright -

Patterson Air Force Base, Ohio.

The authors would like to acknowledge Dr. Ints Kaleps, Dr. Daniel

V. Repperger, Capt. Ronald Julian, Capt. Terrel Scoggins and Capt. lark

Jaster of AAIL for their suggestions and help during the course of this

study.

Ir. Jack Coate greatly assisted in the development of the graphics

simulation, for which the authors would like to express their

appreciation.

-
Accessionl For

NTIS GRA&I

DTIC TAB
Unannounced 5

justificatio

Distribution/

Ava)labiiity Codes
Ava-i and/or

Dist Special

iii

TABLE OF CONTENTS

Page

INTRODUCTION 1
An Overview 1

The Objective 2

Some Important Factors 2

BACKGROUND 4
The Need for a Teleoperative System 4

Current Work 4

The Utah/MIT Dexterous Hand 5

The Kerlin 6500 Robot 5

Issues 6

SPATIAL TRANSFORIATIONS 7
Descriptions 7

Description of a Position 7
Description of an Orientation 7
Description of a Transformation 8

Transformations: Changing Descriptions from Frame to Frame 9
Translated Frames 9
Rotated Frames 10
lappings Involving General Frames 12

The lathematics of Transformation Operators 13

MANIPULATOR KINEMATICS 16
Joint Description 16

Types of lanipulator Joints 16
Significant Dimensions of Joints 17

Link Description 18
The Significance and Kinematic Representation of Links 19
Significant Link Dimensions 19

The Denavit-Hartenburg Notation 19
Affixing Frames to Links 20

First and Last Links in the Chain 20
Intermediate Links in the Chain 21

The Link Parameters in Terms of the Link Frames 22

iv

Page

Derivation of Link Transforms 22

The Direct Kinematics of Manipulators 25

The Inverse Kinematics of Manipulators 25
Solvability 26
The Existence of Solutions and Manipulator Vorkspaces 27
The Existence of Multiple Solutions 27
The Methods of Solution 28
Some Computational Considerations 30

THE MERLIN 6500 KINEMATICS 32

Frame Assignments for the Merlin Manipulator 32

The Kinematic Analysis Procedure 32

A Summary of the Kinematic Parameters 33

The Direct Kinematic Solution for the Left-arm Merlin 33

Direct Kinematics for the Right-arm Merlin 39

The Inverse Kinematic Solution for the Left-arm Merlin 40

Inverse Kinematics for the Right-arm Kerlin Manipulator 53

WORKSPACE DEVELOPMENT FOR THE KERLIN 6500 ROBOT ARK 55
Workspaces of Manipulators 55

The Horizontal Workspace of the Merlin 6500 Manipulator 56

The Vertical Workspace of the Merlin 6500 Manipulator 59

THE UTAH/MIT DEXTEROUS HAND 66

Previous Work 66

Direct Kinematics 66

Thumb Kinematics 69
Denavit-Hartenburg Parameters for the Thumb 69
Thumb Transformation Matrices 70
Direct Kinematic Equation Development for the Thumb 70
Positions of Points on the Last Link 72

Finger Kinematics 72
Denavit-Hartenburg Parameters for the Fingers 72
Finger Transformation Matrices 73
Dirert Kinematic Equation Development for the Fingers 74
Positions of Points on the Last Link 75

Direct Kinematics of the UTAH/MIT Right Hand 76

V

Page

THE SIMULATION PROGRAI 77
Introduction 77

Robot Simulation 77
The Link Dimensioning Approach 77
Data Files 78
Link Dimensioning 79
Coordinate System Transformation 80

The Graphics Software lenus 82
The lain Menu 83
The Setup Menu 83
The Execution Menu 85

CONCLUSIONS 89

The Results 89

Further Work 89

APPENDICES 91
Al Definitions 92

A2 Rotation and Translation latrices 95

A3 Direct Kinematics Simulation for the Merlin 6500
- Left Arm 97
- Right Arm 101

A4 Kerlin 6500 Manipulator Inverse Kinematics Simulation
- Fortran Code 105

- Left Arm 105
- Right Arm 118

A5 Merlin 6500 Manipulator Workspace Development
- Fortran Code 131

Vertical Workspace Development 131
Horizontal Workspace Development 133

A6 Manufacturers Drawings of the Fingers and Thumb for
the Utah%/IT Dexterous land 136

A7 Direct Kinematics Simulation for the
Utah/MIT Dexterous land 138

A8 Computer Graphical Simulation - Fortran Code and
Documented Data Files 146

REFERENCES 192

vi

LIST OF FIGURES

Figure Page
1. Translational lapping 9

2. Rotated Frames 11

3. Link and Joint Parameters 18

4. Link Frames and Kinematic Parameters 21

5. Intermediate Link Frames and Kinematic Parameters 23

6. The Kerlin 6500 lanipulator Frame Assignments
- Side View 31

7. The Kerlin 6500 Manipulator Frame Assignments
- Top View 31

8. The Horizontal Plane Representation of the
Kerlin 6500 lanipulator's Degrees-of-Freedom 56

9. The Vertical Plane Representation of the
Merlin 6500 Manipulator's Degrees-of-Freedom 60

10. Computer Simulation Results of the Merlin 6500
Vertical Plane Vorkspace 64

11. Computer Simulation Results of the Merlin 6500
Horizontal Plane Workspace 65

12. The Utah/MIT Dexterous Hand Frame Assignments

- Top View 67
13. The Utah/KIT Dexterous land Frame Assignments

- Side View 68
14. The Computer Graphical Program - Simulation Results 88

vii

LIST OF TABLES

Page
1. The Number of Inverse Kinematic Solutions

Vs. Non-zero ai 28
2. The Denavit-Hartenburg Parameters for the

Kerlin 6500 Left-arm Kanipulator 33

3. The Kerlin 6500 Horizontal Plane Representation and
the Corresponding Denavit-Hartenburg Parameters 57

4. The Kerlin 6500 Vertical Plane Representation and
the Corresponding Denavit-Hartenburg Parameters 61

5. The Denavit-Hartenburg Parameters for the
Thumb of the Utah/MIT Hand 69

6. The Denavit-Hartenburg Parameters for the
Fingers of the Utah/NIT land 73

7. Link Definition in Data Files 78

8. Rotation and Translation Vectors Stored in Data Files 79

9. Link Translations and Rotation Angles 80

viii

I INTRODUCTION

in Overview

The Air Force has a need to maintain force survivability and base

operability during wartime scenarios in chemical, biological and

radiological environments. The Robotic Telepresence program at the

Armstrong Aerospace ledical Research Laboratory (kANRL) at Vright

Patterson Air Force Base, Ohio, is based on the need to project human

intelligence, perceptual capabilities, and motor skills into hostile

environments through the use of human driven robotic systems, thereby
removing humans from the hazardous environment. The Robotic
Telepresence program at IA]L investigates the feasibility of utilizing

remote human-in-the-loop control of mobile dexterous robots to perform
tasks such as aircraft inspection and servicing, explosive ordinance

disposal, and environmental monitoring and decontamination.
The Robotic Telepresence concept projects human judgment, dexterity

and adaptability in real time into a lethal environment. The program at

AL will develop a series of dynamic telepresence test cells
incorporating driving systems attached to the human arm and hand as well

as remote driven systems involving manipulators and dexterous
end-effectors, amongst other state-of-the-art components. The remote

system currently being evaluated consists of the Utah/lIT dexterous
hands as suitable end-effectors to be attached to the end of robot arms

such as the Kerlin 6500 manipulator.

The task of integrating a system like the Utah/lIT dexterous hand

to a robot arm is kinematically complex, especially in light of the fact
that these two systems are a major part of a remote teleoperation

system. The Kerlin robot arm is kinematically unlike the human arm
while the Utah/lIT hand differs from the human hand in some aspects,

including the positioning of the thumb and the number of digits. This
makes the task of comparison between the human system and the slave

systems a difficult process at best. The integration task is further
complicated by the presence of the remotizer, which performs the
function of locating the actuators of the Utah/lIT dexterous hand away
from the physical hand itself. These complications, amongst others,
result in the need for a complete kinematic understanding of the lerlin

manipulator as well as the dexterous hand, as well as a means for the

depiction and determination of possible complications that may arise

when the two slave sub-systems are attached together.

As a first step in aiding the AAIIN in this research task, the

authors have performed a complete kinematic study of the lerlin 6500

robot arm and the direct kinematics of the UTAR/NIT dexterous hand.

This study has been performed with the basic fact in mind that a human

arm will be involved in the feedback loop and will be directing the

robot/dexterous hand combination in performing tasks with the

teleoperated system. Further, to study the problem of attachment of the

Utah/KIT hand to the lerlin, the authors have developed a computer

graphical simulation program that allows a user to study different

attachment schemes and the effect that these schemes may have on the

kinematic behavior of the slave system.

The Objective

The objective of this project is to develop the closed-form forward

and inverse kinematic solutions of the Kerlin 6500 robot arm and the

closed-form forward kinematic solution of the UTIH/NIT dexterous hand.

A computer graphical simulation of the two systems, when connected

together in user-defined configurations, is also performed in this

study. The aim of the computer graphic simulation is to visually depict

the effect of different attachment schemes on the kinematic behavior of

the slave sub-system when combined together in specific user-specified

configurations, and to prepare the ground-work for future research with

the remote teleoperated systems.

Some Important Factors

One factor kept in mind during the development of computer

simulations was the need for the software to be transportable to the

sponsor's systems. A second factor was the need to allow for changes

when adapting the simulation to the sponsor's available graphics

packages. As a result, all source code was written in a modular fashion

in a commonly used language (FORTRAN), and utilizes as few routines out

of the graphics package (DISSPLA) as possible. The simulations are

user-friendly and provide for modification and development as the

2

teleoperation study proceeds. An important factor considered during the

development of the kinematic equations was that the robot/hand

combination would be driven from a remote location by a human arm

encased in an exo-skeleton. This resulted in the kinematics study being

performed using kinematic frames that could, be compared to a human

arm/hand system.

3

II BACKGROUND

The Need for a TeleoDerative System

Since the beginning of the present decade, it has been found
necessary to perform manipulations in environments unsuitable for the

presence of a human being. Some such hazardous environments include
radiation hazard zones, chemical or biological hazard areas, undersea,

deep space, etc. A human being would find it extremely hazardous, if

not impossible, to exist in such environments, and since it is necessary

to project human judgement and adaptability to perform unstructured

tasks which require dexterous manipulation, there exists a need for

remotely operated dexterous systems which provide a means for projecting

human cognitive and motor functions into such environments. Such

systems, when fully developed, will allow an operator, present at a
comparatively safe location, to perceive and perform manipulation tasks

just as if the operator was physically present at the remote work site.

Current York

To achieve the above objective, various teleoperation systems

dedicated to performing tasks in specific hostile environments have been
developed over the last twenty years. Under-sea teleoperative systems

have been successfully used to perform dexterous manipulations. The

recent Titanic exploration performed by the Voods Role Oceanographic

Institute using the manned submersible "Alvin" and the tethered

manipulator, "Jason, Jr"1 is one example. Other efforts include the

Advanced Integrated !anipulation System (AIlS - a prototype
remote-handling system for use in hazardous environments developed by

the Oak lidge National Laboratory) where the master arms are kinematic

replicas of the slave arms2 ; the U.S. Army's Human Engineering

Laboratory aoldier nbot Interface Project (SRIP)2, meant for
battlefield scenarios; the ORNL/NASA !an-Equivalent Tele-Jobot (NETR),

which is a modularized seven degree-of-freedom manipulator2; the lemote

Dperations and laintenance Demonstration (ROD) consisting of the model
1_2 manipulator (a dual-arm force-reflecting bilateral servo-manipulator

system)2 ; the Earine Corps/Xaval fcean Jystems renter's (NOSC)

around-lir TElelobotics aystems (GATERS) 2; and the current work being

4

done in other countries with multiple prehension manipulator systems in
3t4tele-robotic applications . All these teleoperative systems have been

designed to be able to perform dexterous manipulation tasks in specific

environments.

The ITA1/NIT Dexterous land

The development of anthropomorphous systems for bio-engineering

applications has resulted in research efforts being directed towards the

implementation of dexterous systems which could be utilized for a large

variety of manipulation tasks. The existence of a naturally occurring,

highly complex system like the human hand has led to the development of

semi-anthropomorphic, dexterous manipulator end-effectors. One such

system in current existence is the UTAI/IIT dexterous hand, a sixteen

degree-of-freedom system consisting of three four-jointed fingers and a

four-jointed thumb situated off-center in the palm. A left- and right-

pair of these hands will be used at AIIIL as a research testbed to

experimentally investigate the various issues associated with

human-in-the-loop control of dexterous end-effectors.

The lerlin 6500 Robot

The Utah/lIT dexterous hand will be attached to the lerlin 6500 six

degree-of-freedom robot arm to form the remote manipulator system.

Considerations such as the payload capacity, maximum tool-tip speed,

accuracy and repeatability when encumbered by the heavy dexterous

hand/remotizer system, the primary cost, and the availability of

sufficient degrees of freedom to allow dexterous operation, etc.

affected the choice of the manipulator for the purpose of evaluating the

feasibility of integrating the Utah/lIT hands to a robot arm.

The lerlin 6500 robot arm is a six degree-of-freedom industrial

manipulator with a payload capacity of 50 lbs. and a reach of 40 inches.

The repeatability of the lerlin 6500 arm is 0.001 inches. Each of the

six degrees-of-freedom, viz. the waist, shoulder, elbow, wrist roll,

wrist pitch and hand roll are controllable through a digital computer.

The lerlin arm is therefore well suited to the task of moving around in

three-dimensional space with the Utah/KIT hands attached at the end.

5

Issues

The first issue that arises when linking a robot arm to an

end-effector system is the fact that the two systems have to be combined

together physically to be able to perform a set of tasks. The next
issue that must be addressed is the availability of a suitable

work-space provided by the combined systems, such that performance of

the desired tasks when combined together would not be inhibited. Both

issues require the robot and end-effector to be kinematically understood

and accurately modeled.

The actual combination of the Utah / NIT dexterous hand to the

lerlin robot arm is complicated by the presence of a "remotizer", a

multiple-bar linkage mechanism that allows the pneumatic actuation

system of the Vtah/NIT hand to be located away from the physical hand.

This study, however, does not deal with the remotizer in any way beyond

the acknowledgement of its presence as a constraint in the achievement

of anthropomorphic arm geometry as regards the robot/dexterous hand

combination. This study is intimately concerned with the kinematics of

the two remote systems, specifically, with the direct and inverse

kinematics of the lerlin 6500 robot arm and the direct kinematics of the

Utah/NIT dexterous hand.

It is necessary to study the best possible method of attachment of

the Utah/NIT hand to the Kerlin robot arm. It is also needed to study

the behaviour of the two systems when combined together and to obtain an

idea of the attachment component for the two systems. This can either

be done using actual models of the robot arm, the dexterous hand and

suitable attachment pieces, or can be performed using a computer

graphical simulation, or both. The computer graphical simulation method

offers the advantage of being less costly and allows for many more

possible kinematic attachment methods to be studied. The simulation can

also be used to study the movement of the manipulator and end-effector,

as well as assist in modeling the system's kinematic behaviour. Vith

this fact in mind, a computer graphic simulation has been developed to

model the behaviour of the left-shouldered Kerlin arm and the

left-fingered UTAH/lIT dexterous hand. A minimum set of commands from

the graphics package (DISSPLA) have been used to allow for

transportability of the software to the sponsor's site.

6

III SPATIAL TRANSFORIATIONS

Descriotions

lobotic manipulation requires that the end-effector be moved around

in space. This involves describing positions and orientations of the

mechanism in a mathematical form. The definition of manipulator

position and orientation and the manipulation of mathematical quantities

which represent position and orientation is performed by using

rinat systems (or frames) and transformations, which contain the

description of both positions and orientations.

DescriDtion of a Position

The position of any point P in the universe can be represented with

respect to a base frame by a [3xl] position vector. As different

coordinate systems can be used, vectors must be tagged with information

identifying which coordinate system they are described in. I leading

superscript for a vector indicates the coordinate system in which it is

referenced, for example, AP refers to the position of point P, which is

described by three numerical values indicating distances along the axes

of frame {A}. Individual components of a vector are identified by the

trailing subscript x, y and z. Thus, the positional representation of

point P relative to {A} would be written as

S Px Ipy [pAz (3.1)

where T denotes the transpose of the matrix.

Descrigtion of an Orientation

The complet, location of a body in space is not specified until its

orientation is also given. A point on a body could be oriented

arbitrarily while being at the same position with respect to the base

frame. To describe the orientation of a body, we attach a coordinate

system {B} to the body and then give a description of the coordinate

system relative to the reference system {A}.

7

Thus, positions of points are described with [3xl] vectors, while

orientations of bodies are described by body-attached coordinate

systems. One convenient way to describe the body-attached coordinate

system is to describe the unit vectors of its three principal

(orthonormal) axes in terms of the unit vectors in the universe (or

base) coordinate system. It must be noted here that the description of

two vectors would suffice, since the third can be obtained by taking the

cross-product of the given two. The unit vectors along the principal

directions of the body-attached coordinate frame {B) can be denoted as

XB' YB and ZB. When written in terms of the universe or base coordinate

system {A these vectors are written as AXB IY,, and AZB . It is

convenient to stack these unit vectors together as the columns of a

[3x3] matrix, in the order AXB AYB and AZB. This [3x3] matrix is the

rotation matrix which describes {B} relative to {A} and is written as
BR. Explicitly, BR is given by

A [1 r1l r12 r13
[R lxB AYB 1ZB r2, r22 r23 (3.2)

r 31 r 32 r 33

Descrivtion of a Transformation

The information needed to completely specify the whereabouts of the

manipulator end-effector is its position and orientation. The point on

the body whose position is chosen to be described is the origin of the

body-attached frame {B). The position and orientation pair which

completely describes a body's whereabouts is combined together to form a

transformation, which is defined as a set of four vectors giving
position and orientation information. It must be remembered here that a

frame is an orthogonal coordinate system which is described relative to

some other frame. Thus, when the frame {B} is described with respect to

the frame {A}, then AT can be represented as
B

A T = 1R1 (3.3)
B B 1PorgJ

8

where A is the rotation matrix representation of {B} relative to

{A), and is specified by equation (3.2), and Ap is the vector from, , Borg

the origin of {A} to the origin of {B} and can be written according to

equation (3.1).

Transforations: Changin; Descriptions from Frae to Frame

In robotic kinematics, we are concerned with describing position

and orientation in various reference coordinate systems. Thus, we need

to be able to transform this information from frame to frame rather

frequently.

Translated FraMes

Let the position of the point P be defined with reference to the

frame {B) as shown in Figure 1. It is required to express the position

of P with respect to {A. Vhen {A) has the same orientation as {B}, the

difference in {A} and {B} can be represented by a translation vector,
I P , which locates the origin of {B} with respect to IA.

org

4S} '

4' 4

1 A1A IAp R

I Figure 1. Translational lapping5

{B} has the same orientation as {A}.

9

. ---- ,. sn m I II I00I

Since both vectors are defined relative to frames of the same
orientation, we can compute the description of point P relative to {A}

by the use of vector addition:

Ap = Bp + p (3.4)= + AB org

It must be remembered that it is possible to add vectors that are

defined in terms of different frames only if the frames have the
same orientation. It must also be noted here that the point P has

itself not moved in space - only its description has changed.
The vector Ap defines a translational mapping of point P fromBorg

its description in {B} to {A}, since all the information needed to
perform the change in description is contained in Ap (along with theBorg

knowledge of their equivalent orientation).

Rotated Frames

The matrix AR describes the relative orientation of {B} with {A}B

and is composed of the three column vectors, A1I AY, and AZ BB' B ad ZB. By our

definition, the columns of a rotation matrix have unit magnitude and
represent vectors that are orthonormal. Since the inverse of a matrix

with orthonormal columns is equal to its transpose, we have

AR = BR- BRT (3.5)
B AA

Thus, since the column vectors of AR are the unit vectors of {B}BR
written in {A}, the rows of AR are the unit vectors of {A} written inB
{B}.

As such, a rotation matrix can be interpreted as a set of three

column vectors or as a set of three row vectors as follows:

AR [A AY AZB BT ByT BZT 1 (3.6)
BB B j

10

We often need to know the components of a vector with respect to a

frame {A) when we know its components with respect to a frame {B}, where

the origins of frame {A} and {B} are coincident (Figure 2). This

computation is possible when a description of the orientation of {B} is

known with respect to {A}. This orientation is given by the rotation

matrix 1AI.

{BI (A)

zig 2A

BPA

2RR

XA

Figure 2. Rotated frames.

Since the components of any vector are simply the projections of

that vector onto the unit directions of its frame, the projection is

computed by the vector dot product. Thus, the components of A can be

computed as

Apx BXA .B,

Apy = BYA .Bp, (3.7)

Ap = B pz BP

In order to express the above equation in terms of a rotation

11

matrix multiplication, we note from the previous equation that the rows

of B are BA) BY and BZA. As such, the above equation can be written

compactly as

AP = B (3.8)
B

Equation (3.8) implements a rotational mapping from frame {B} to

frame {A}, i.e. it changes the description of a vector from BP into AP.

NaDings Involving General Frames

We can now address the problem of mappings involving general

frames, i.e. those frames where both translational and rotational

differences are involved. In this case, the frames {A} and {B} do not

have coincident origins, nor do they possess equivalent orientations.

The vector that locates {B}'s origin relative to {A} is called lp ,

while the rotation of frame {B} relative to {A} is given by IR. Given

BP, the vector describing the point P with respect to frame {B}, we wish

to compute AP, the description of the vector relative to {A}.

This is done by changing BP to its description relative to an

intermediate frame which has the same orientation as {A}, but whose

origin is co-incident to {B}. This is mathematically performed by

pre-multiplying BP by I1, as seen previously in (3.8). We can now

translate between origins by performing simple vector addition, since

the intermediate frame and {A) have equivalent orientations.

Eathematically speaking, this is done as follows:

Ap = AR Bp + Ap (3.9)
Borg

The above equation describes a general transformation of a vector

from its description in one frame to its description in another.

Since we are also interested in a concise notation, the above

equation can be written as

12

p AT B (3.10)

where the operator BT is defined by

A (3x3) A (x)1
(W) Ap (3xl)

B Borg (3.11)

-- - - - -10 0 0 1

4x4

and the AP and BP vectors are embedded in [4xl] matrices.

The 4 x 4 matrix in (3.11) is called the homo eneous transformation

ooerator. This transformation matrix consists of the position and

orientation sub-matrices and represents a description of the frame {B}

relative to frame {A} as well as the transformation of a vector

described in terms of frame {B} to its description in {A}.

The lathematics of Transformation Oerators

Before we proceed further, it is advisable to explain the two

important mathematical operations in manipulator kinematics regarding

the transformation operator B, viz. concatenation and inversion.

lultiple transformations are performed when there exist more than

two frames and one of the frames, say {C} (or a vector represented by

one of the frames), needs to be mapped to the first frame {A} through
the second frame {B}. This situation is encountered when the available

description of the frames includes a description of the third frame {C}

relative to the second one {B}, i.e. BT is known, and the second frame

{B} relative to the first frame {A}, i.e. AT is known. The compound
B

transformation is mathematically performed by the use of matrix

multiplication operations as follows

A T = A T BT (3.12)
C B C

Here, IT represents the homogeneous transform or mapping of frame

13

{ C} with respect to frame {AI. We notice the notational convenience

here - the leading sub-script of the first term on the right side of the

above equation may be said to "cancel" the leading super-script in the

second term on the right side of the equation, to give the term on the

left side of the equation.

In many cases, it is necessary to perform a transformation matrix

inversion. Typically, this is done where the order of frame

descriptions is found to be incompatible with compound transformation

proceedures. In the example given above, if the description of {B}

relative to {C}, i.e. CT was known, then the determination of AT could
B C

only be performed by inverting CT to obtain BT, and using
Bthe above

equation to determine AT. Thus, (3.12) will now become

A T = AT .C T_1 (3.13)
C -B *B

The inversion of the transformation matrix could be easily

performed by the generalized matrix inversion method. A computationally

faster method (involving a fewer number of operations) and one which

utilizes the inherent structure (orthogonality) of the rotation matrix

to advantage is explained below.

To find BT, we must compute B1 and BP from BR and 1p From
' A. L org Borg"

(3.5), we have

B - A1T (3.14)
A B

and so we change the description of AP into {B} using the

Borg

transformation involving general frames, as

B(APOr) = R.APBor + BAo (3.15)

org A Borg + org

Since the left side of the above equation is necessarily zero, we have

14

I~B B I I

1 = -1 ABorg org

I _1T Ip (3.16)B Borg

We can therefore write [BT - i.e., BTas:

IT] 1 = T = -B Borg (3.17)

-0 -- 0 -- 01l

Ye can thus perform the inversion operation on the transform matrix

using (3.17).

15

IV EANIPULATOR KINEKATICS

lanipulator kinematics defines the geometrical properties of

motion. The direct kinematics problem is defined as the determination

of the end-effector position and orientation when the joint variables

are known [Appendix 1.7], while the inverse kinematic problem is defined

as the determination of the joint variables to achieve the desired

position and orientation [Appendix 1.8]. We will first examine the

generalized direct kinematic problem, followed by a study of certain

important factors involved in the generalized inverse manipulator

kinematics problem.

In order to deal with the complex geometry of a manipulator, frames

are affixed to various parts of the mechanism. Vhen the mechanism

articulates, the relationship between the frames describes the kinematic

behaviour of the manipulator.

Joint Descriution

I manipulator consists of a set of links connected together in an

open chain by joints.

TyDes of lani~ulator Joints

lanipulator links can be joined together by a variety of joint

types. The commonly existing manipulator joint types6 consist of :

Ievolute joint, where the joint consists of a simple hinge, with

the only possible relative motion between the paired members being a

rotation about the joint axis. This is the most commonly used joint in

manipulators.

Prismatic joint, where the joint consists of a sliding type

mechanism, with no relative rotation occurring between the jointed

members. The only possible relative motion is a pure (rectilinear)

translation along the slide direction. This is the next most commonly

used joint in manipulators.

Helical ioint. These are rarely found in manipulators due to the

difficulty in powering the joint. The effect of a helical joint is

normally obtained by a special combination of the revolute and prismatic

joints. The joint acts like a screw-and-nut arrangement. It can be

16

substituted for by a co-axial revolute and prismatic joint with a

constant ratio of rotational to translational displacement.

Cylindrical Joint, which is in effect a revolute joint without the

end constraints, i.e., sliding takes place along the revolute axis.

This joint is normally found in manipulators as a co-axial revolute and
prismatic joint, with each joint independantly powered and controlled.

Spherical Joint, which consists of a spherical ball and socket

arrangement. The relative motion is spherical, resulting in all points
remaining at a fixed distance from the center point of the joint. In
manipulators, the effect of this joint is obtained by three non-coplanar

independently powered revolute joints whose axes always intersect at a

point.

Flat Dlanar joint, which consists of two flat nlanes sliding and

turning on each other. It can be kinematically constructed by two
non-planar prismatic joints and a revolute joint perpendicular to the

directions of both the prismatic joints.
Although other manipulator joints do exist, they are rarely used

due to the associated problems in powering and controlling them.
In certain cases, as in some of those above, there exist

manipulator joints with more than a single degree of freedom. These
joints can be kinematically modelled as 'n' joints of one degree of
freedom each, connected together with 'n-i' links of zero link length.

As such, we will, without loss of generality, consider manipulator

kinematics with joints having single degrees of freedom at each joint.

Significant Dimensions of Joints

Significant dimensions for joints consist of the link offset (di)

and the joint Aple (0i). Neighbouring links are joined together at any

one joint, which has an axis of motion that is common to both the links
connected at the joint. The distance along this common axes, from one

link to the next, is called the link offset (di). The link offset di

for joint i is thus the distance measured along the axis of joint i,
from the intersection of the common perpendicular between the axes of

joints i-1 and i, to the intersection of the common perpendicular

17

between the axes of joints i and i+1. The ji 0i describes the

amount of rotation about the common axes at the joint, between one link
and its neighbour. This parameter is measured as the angle from the

extension of the common perpendicular between the axes of joint i and
i-I to the common perpeAdicular between the axes i and i+1, in a plane
perpendicular to the axis of joint i. The link offset is considered to

be the joint variable if the joint under consideration is prismatic in
nature, while the joint angle is the joint variable if the joint under

consideration is revolute.

Axis i- 1 Axis i

Link i - I

~Link i

/

a i - I1d

Figure 3. Link and joint parameters.

LINK DESCRIPTION

Ve now examine the significance and kinematic representation of

links as well as their description.

18

The Significance and Kinematic Representation of Links

Links are used to connect joints. The kinematic significance of

links is that they maintain fixed configurations between their joints

and other points and lines along the axis of the joints. It is

important to note here that, regardless of the actual location, shape or

size of a link, a manipulator may be completely represented

kinematically by a skeleton diagram, which is a line drawing

representation of the links of the manipulator.

Significant Link Dimensions

Significant dimensions of a link consist of the link length and the

link tjist. For any two joint axes in three dimensional space, there

exists a well-defined measure of distance between them. The distance

measured along a line which is mutually perpendicular to both axes

defines the link lengh. The link twis is measured in a plane whose

normal is the mutually perpendicular line between the two axes (the axes

under consideration and the preceeding joint axes) and is defined by the

angle formed between the projections on this plane of the two joint axes

(see figure 3).

Any open kinematic chain can be described by specifying the values

of the joint agle, link offset, link length and link twist for each

joint-link system. Of these four parameters, three are constant for a

joint, while the fourth parameter forms the joint variable. The

specification of an open kinematic chain by means of these four

quantities is known as the Denavit-Iartenburg convention

The Denavit-Hartenburg Notation

The Denavit-Hartenburg notational convention involves the

description of a robot arm by means of the link leng1h ai_l, link twist

angle ai_, link offset di, and the ignt anle Pi. The method depends

on the fixing of a frame to each joint of the robot and determining the

joint parameters and joint variable range. Ve utilise the convention

that frame {i} has its origin at joint axis i and is attached to link i.

Thus, the parameter link leng1h (a i-) is measured as the signed

distance along the common perpendicular to the axes i-1 and i, from

19

joint axis i-1 to joint axis i. The link l (ai_l) is measured as

the signed angle (using the right-hand rule) between the projection of

axis i-1 to axis i on a plane whose normal is the mutually perpendicular

line between axes i-I and i. The link offset (di) is the signed

distance measured along the axis of joint i from the point where ai_ 1

intersects the axis i, to the point where a, intersects that axis. The

j1nt Anle (0i) is measured as the signed angle (using the right hand

rule) between the extension of ai_1 and ai, about the axis of joint i.

In the special case of the joint being the first one under

consideration, i.e. i is 1, the link parameters are determined from the

base frame, here (i-1) is 0. Since link length ai and link twist ai

depend on joint axes i and i+l, the parameters at the end of the chain,

an and an, are set to 0 and do not need to be defined.

Affixing Frames to Links

In order to describe the location of each link relative to its

neighbours, a frame is attached to each link. The link frames are named

according to the link to which they are attached, i.e. frame {i} is

rigidly attached to link i.

The convention adopted for affixing frames to links depends on

whether the link is an intermediate link or the first/last link in the

chain.

First and Last Links in the Chain

We attach the frame {0} to the base of the robot, or to a

non-moving section of the arm, called link {0}. This base, or reference

frame, can also be set up with its origin coinciding with frame {1} when

the joint I variable is 0 (the generally preferred method). The Z-axis

of frame {0} coincides with the Z-axis of frame {1), and so do the I and

Y axes. This ensures that a0 = 0.0 and a0 = 0.0. Additionally,

di = 0.0 if joint 1 is revolute, while 01 = 0.0 if joint 1 is prismatic.

However, when the base or reference frame is not located to coincide

20

with frame {},, a0 # 0.0 and a0 J 0.0. In this case, it is not

necessary that 01 be equal to 0.0. The base frame {0} is then set up

for mere convenience.

For joint In' revolute, the direction of 1n is chosen so that it

aligns with In- 1 when 0n = 0.0, and the origin of frame {N} is chosen so

that dn = 0.0. In cases where three axes intersect at a point, frame

{N} is located at the point of intersection of the three axes. If joint

'n' is prismatic, the direction of In is chosen so that On = 0.0 and the

origin of frame {N} is chosen at the intersection of In_1 and joint axes

'n' when dn = 0.0.

Axis i - I Axis i

Link i - I

ia
Xi - I din it

Figure 4. Link frames and kinematic parameters5 .

Intermediate Links in the Chain

The convention used to affix frames on intermediate links involves
setting the Z-axis of frame {i}, called Zi, coincident with the joint i

21

axis. The origin of frame {i} is located where the ai perpendicular

intersects the joint i axis. The direction of Zi can be in either

direction along the joint i axis. Xi is set up so that it points along

a. in the direction from joint i to joint i+1. In the special case of

ai = 0, 1i is chosen normal to plane of Zi and Zi+ 1. The link twist ai
is measured in the right hand sense about Xi. Yi is formed by the right

hand rule to complete the ith frame. Figure 4 shows the location of the

frames and the kinematic parameters.

The Link Parameters in Terms of the Link Frames

Attachment of the link frames to the links according to the

convention described above results in the manipulator kinematic

parameters being redefined in terms of the link frames as follows

ai = the signed distance from Zi to Zi+l, measured along Xi,

di = the signed angle between Zi and Zi+l, measured about Ii in the

right hand sense,

di = the signed distance from Xi.1 to li, measured along Zi, and

0i = the signed angle between Ii.i and li, measured about Zi in the

right hand sense.

It must be noted here that the above convention does not result in

a unique attachment of frames to links. When the Zi-axis is aligned

along joint axis i, there are two choices of direction in which to point

Z. Also, in the case of intersecting joint axes (i.e. ai = 0), there

are two choices for the direction of li, corresponding to the choice of

signs for the normal to the plane containing Zi and Zi+1.

Derivation of Link Transforms

The general form of the transformation which relates the frames

attached to neighbouring links is now derived. These transformations

22

are then concatenated to solve for the position and orientation of link
'n' relative to link 0.

Axisi - I Axisi

Link i - I

Link i

Figure 5. Intermediate link frames and kinematic parameters .

The determination of the transformation which defines frame {i}
relative to frame {i+1} is, in general, a function of the four link

parameters. For any given robot arm, this transformation will be a

function of only one variable, the other three being fixed. It must be

remembered here that we are dealing with multiple degree-of-freedom

joints as multiple joints with one degree of freedom and zero offsets

each. By defining a frame for each link, the kinematic problem has been

broken into 'n' sub-problems. To solve each of these sub-problems, it

is further necessary to divide them further into four sub-subproblems.

Each of the four sub-subproblems consists of a basic transformation

which is a function of one link parameter and can be written by

inspection.

It is necessary to define three intermediate frames {P}, {Q} and

{1} for each link. Figure 5 shows the same pair of joints as figure 4,

with the intermediate frames {P}, {Q} and {K} defined. For clarity,

23

only the I and Z axes are shown.

In figure 5, frame {l} differs from frame {i-1} only by a rotation

of a i_. Frame fQ} differs from {R} by a translation ai_1 . Frame {P}

differs from {Q} by a rotation Pi, and frame {i} differs from {P} by a

translation d1. To write the transformation which transforms vectors

defined in {i} to their description in {i-I}, we write

i-Ip = i-IT T QT PT iP (4.1)

-l QP i

or

i-Ip = i-iT ip (4.2)

where

ilT = ilT qRT QT PT (4.3)
i R QP i

Equation (4.3) may therefore be written as

i ilT= Rot(Xi,*i 1) Trans(Xi,ai_l) Rot(Zi,9i) Trans(Zi,di) (4.4)

or

i-iI T = Screw(Xi, ai_1, ai_1 ce(i di, Oi) (45i 1 1SreZii i45

where Screw(Qr,O) stands for a translation along an axis q by a

distance r, and a rotation about the same axis by an angle 0.

The general form of the transformation of vectors defined in frame

{i} to their description in frame {i-1}, i.e. ilT, is obtained from

(4.5) (detailed in Appendix 2), and is given by

24

c0 i -s9 i 0 ai- I

i s cai- 1 ci cui- 1 - sai- 1 - sai- dii1l =(4.6)

spi sa_1 cli sa_1I cai_1 ca_ 1 di

0 0 0 1

where

cUi = Cos 0i

s9i = Sin Oi

cai_1 = Cos ai_ 1

sai-1 = Sin ai_1

The Direct Kinematics of lanigulators

Having derived the link frames and the corresponding link
parameters, developing the direct kinematic equations is a

straight-forward process. Using the values of the link parameters, the
individual link transform matrices are computed. The manipulator arm
kinematic transformation matrices are then multiplied together to find

the single transform that relates frame {N} to frame {O}, as shown in
equation (4.7).

OT = OT 1T 2 ITN-T (4.7)N -1 23 N

This transformation will be a function of all 'n' joint variables.

The kinematic parameters for joint 'i' are ai-l, ai_ 1 and di as well as

8i, the joint variable for a revolute joint. Each of these parameters,

as well as the joint variable, have to be determined for each link of
the manipulator.

The Inverse Kinematics of lanipulators
The inverse kinematics problem involves the determination of the

joint angles of the manipulator which will achieve the desired position

and orientation. This more difficult problem can be solved by various

25

methods, of which the prominent and easily programmable ones utilise
either geometric or algebraic manipulations to obtain a set of

solutions. One of the important factors that has to be taken into

account consists of whether the defined (known) position is at the tip
of the manipulator or at some other convenient point along the last

axis. Another important factor to be taken into consideration is
whether there exists a solution for the desired position and

orientation. Further, the solution set may consist of one or more

solutions which will allow the achievement of the desired position and

orientation, and a choice between these solutions must be made.

Solvability

The problem of solving the kinematic equations of a manipulator to

determine the joint angles is a non-linear one. Given the values of
each of thet

terms in NT, we have to deterine a viable set of joint
angles 01) 02, 03) . . . ,0n . For a six degree-of-freedom arm, the set

of joint angles that needs to be determined (the unknowns) is six. Ve

have a total of 16 values obtained from the NT matrix, four of which

(the last row) are trivial (eguating 0 or 1 on both sides). Out of the
remaining twelve known equations, three equations define the position

values and are independant. From the nine remaining equations that

arise from the rotation matrix part of T, onn ly three equationsar

independant. These three equations, added with the set of three

equations that arise from the position vector part of the transformation

matrix, provide a set of six equations. For a six degree of freedom

manipulator, we have six joint angles to be determined, and six
equations. These equations are a set of non-linear transcendental

equations which can be difficult to solve, specially for a general

mechanism with six degrees of freedom with all link parameters non-zero.

This is unlike industrial manipulators where the link parameters consist

of twist angles of 00 or 900, resulting in their sine and cosine values

being 'nice' numbers like 0 or 1, or where many of the offsets are 0.

As with any set of non-linear equations, it is necessary to look for the

existence of solutions, multiple solutions and the method of solution.

26

The Existence of Solutions and Manipulator Vorksoaces

The question of whether or not there exists an inverse kinematic

solution for the successful achievement of the desired position and

orientation raises the question of manipulator workspace. Broadly

speaking, workspace is that volume of three dimensional space which the

end-effector of the manipulator can reach. For a solution to exist, the

desired goal point must lie on or within the workspace boundaries. The

dexru worksace is that volume of space which the robot end-effector

can reach with all orientations, i.e. at each point in the dexterous

workspace, the end-effector can be arbitrarily oriented. The reachable

works~ace is that volume of space which the robot can reach in at least

one orientation. Thus, the dexterous work-space of a robot is a sub-set

of it's reachable workspace.

For each manipulator, there exists an outer and inner workspace

boundary. Thus, there exists an outer reachable and an outer dexterous

workspace boundary, as well as an inner reachable and inner dexterous

boundary. The outer and inner workspaces are a function of the

kinematic parameters of the manipulator and the joint variable range

limits.

The Existence of Nultiple Solutions

Inother common problem encountered in solving manipulator inverse

kinematic equations is that of multiple solutions. The existence of

multiple solutions arises due to the kinematic arrangement of

consecutive joints and the range of motion of each joint. For example,

when there exist two joints with successive parallel horizontal axes,

one of the ways to achieve the desired position is with the first link

pointing upwards with the second link pointing downwards, while the same

position is achievable by the first link pointing downwards and the

second link pointing upwards. Another example of the existence of

multiple solutions involves the orienting mechanism of the robot. For

each solution, provided the joint variable ranges are not exceeded,

there will exist a wrist 'flipped' solution. Also, the more nonzero

link parameters there exist for the manipulator arm, the more ways there

will be to achieve the desired goal. For a manipulator with six

rotational joints, the maximum number of solutions is related to the

27

number of the link length parameters (ai) that are equal to zero. The

more that are nonzero, the bigger the number of solutions. For a

completely general rotary-jointed manipulator with six degrees of

freedom, there are up to 16 solutions that are possible. Table 1 shows

the relationship between the link length parameters (ai) and the number

of solutions for a six degree of freedom manipulator.

Table 1. Number of Solutions vs. Nonzero ai.

ai Number of solUtions

a1 = a3 a 5 = 0 < 4

a = a5 =0 < 8

a3 =0 < 16

All ai =0 < 16

The Iethods of Solution

Unlike the process of solving a system of linear equations, there

are no general algorithms that can be adopted to solve a set of

non-linear equations. It therefore becomes necessary to note that a

manipulator is considered solvable if the joint variables can be

determined by an algorithm which allows the determination of all the

sets of joint variables associated with the goal frames position and

orientation.

The broad division of manipulator solution strategies is divisible

into closgd-form solutions and numerical solutions. Due to the

iterative nature of numerical solutions, they are much slower in
"solving" the manipulator than closed form solution techniques.

Further, most numerical iterative techniques utilised in "solving"

manipulators do not guarantee the finding of all possible solutions that

may exist for the manipulator. Closed form methods involve a solution

28

based on analytical expressions or on the solution of a polynomial of

degree 4 or less, such that non-iterative calculations suffice to arrive

at a solution.

Vithin the class of closed-form solution techniques, two major

distinctions can be made. The two sub-classes of the closed-form method

include the rpguel algebraic solution process and the geometric process.

The geometric process, however, does involve a degree of algebraic

manipulation.

A recent major result is that all systems with revolute and

prismatic joints having a total of six degrees of freedom in a single

series chain are solvable, at least numerically. It is, however, true

that it is only in special cases that robots with six degrees of freedom

can be analytically solved. These robots possess the common

characteristic of several intersecting joint axes and/or many ai (twist

angle) equal to 00 or +900. A sufficient condition that a manipulator

with six revolute joints will have a closed-form solution is that three

neighbouring joint axes intersect at a point.

A well-known solution method for a manipulator with all six

revolute joints and with three axes intersecting at a point is the

Piever's solution process. This consists of transferring the known

position information about the goal point to the point of intersection

of the three axes. Successive algebraic manipulations then leads to a

solution. The advantage of Pieper's technique is the determination of

kinematic singularities during the solution process, as well as the

determination of all possible solutions to the inverse kinematics

problem for the manipulator under consideration.

The geometric technique of closed-form solutions to inverse

kinematics has never proven to be popular, due to its inherent

dipadvantage of not being able to provide kinematic singularity

information. It does possess the advantage of providing information

about the determination of which of the solutions is to be adopted.

However, the technique works to advantage only in the presence of "nice"

twist angles like 00 or *900 and becomes complicated in their absence,

and often even when some of the ai are "nice" angles.

29

Some Comuutational Considerations

In path control schemes, it is often necessary to solve for the

inverse kinematic solutions of manipulator arms at a fairly high rate,

sometimes as fast as 20-30 Hz., or faster. As such, computational

efficiency is often an issue in manipulator inverse kinematic solution
processes. Numerically iterative processes are unable to fulfill such

requirements and are therefore not generally adopted, unless there does

not exist a closed-form solution for the manipulator.

The structure of computation is also of importance. It is more

efficient to generate all of the joint variables in parallel and to use

lookup tables than to generate all of the angles serially. It is also

much more efficient to generate only one solution than all solutions,

specially when all of them are not required. Another time saving
proceedure often adopted in practice is the generation of inverse

kinematic solutions off-line, storage in a lookup table against a set of

goal point positions, and then adjusting the solution to achieve the

exact desired goal point position. The remaining orientation joint

variables can then be computed by using the closed-form equations.

30

X6 UTE IZO YO,Y1,Z2 cout)

Z6 Z4 XIMOTOR
7 Z3 I.,HOUSING

Z5 <out) INNER 1.COUNTER
Y6 (i) ARMWEIGHT

BASE

Figure 6. The Kerlin 6500 Manipulator

Frame Assignments - Side View.

I ZODID
(out of paper)

X 4,X5,X67X Y2 (into paper)
(out) Z : Z

figure 7. The Merlin 6500 Manipulator

Frame Assignments - Top View.

31

V THE KERLIN 6500 KINEMITICS

Frame Assignments for the Kerlin Nanipulator

The first step involved in the kinematic analysis of manipulator

mechanisms is the setup of Cartesian frames at each joint of the

manipulator. This is done following the rules for frame assignment

outlined in Chapter V, and is demonstrated in figures 6 and 7. Frame

assignments have been performed in the 'Home' position, defined by the

inner arm, the outer arm and the link between the wrist pin and the face

plate being parallel to the floor and pointing towards the front of the

robot.

The origin of the base frame {O} has been located at the

intersection of the waist and shoulder axes, with the Z0 axis aligned

with the waist axis. This location of the origin of {0} offers the

advantage of a similarity to anthropomorphous arm geometry.

The origin of frame {1} coincides with the origin of {O}, and {1}

is coincident to {O} at the 'home' position. The origin of {2} is

located at the center of the inner arm, with Z2 positive from the origin

of {2} in the direction formed from the waist to the shoulder.

Frame {3} has an origin located at the center of the outer arm. Z3

lies along the axis of joint 3 and has a positive direction similar to

Z2, measured from the origin of {3}. Z3 is always parallel to Z2.

The origins of {4}, {5} and {6} are located at the center of the

wrist pin. Z4, Z5 and Z6 lie along their respective axes, with Z4 and

Z6 positive towards the end of the arm and Z5 positive coming out of the

paper. The Xi and Yi (i = 1 to 6) axes are set up according to the

rules defined in Chapter 4.

The Kinematic Analysis Procedure

Following the assignment of frames at each joint, it is necessary

to determine the kinematic parameters for the Merlin 6500 arm. These

parameters are determined by using the rules outlined in Chapter 4. The

direct kinematic analysis of the mechanism can then be performed by

32

forming the transformation matrices using (4.6) and concatenating them.

There is always a unique result in the direct kinematic analysis of

robotic arms.

A Summary of the Kinematic Parameters

Since all the joints are revolute, the joint variables are Pl, (i =

1 to 6), where i denotes the joint number. The kinematic parameters are

derived using the Denavit-Hartenburg convention, defined in Chapter V,

and are summarized in Table 2.

Table 2. The Denavit-Hartenburg Parameters for the
Kerlin 6500 Left-Arm lanipulator

ai- ai-1 d2 0i Kinematic
(degrees) (inches) (inches) (degrees) Range (degrees)

1 00 o" o" 01 * 1470

2 -90 ° o" d2 (18.915") 02 + 560 to - 236'

3 00 a2 (17.38") d3 (-6.915") 03 + 560 to - 2360

4 -90 O" d4 (17.24") 04 * 3600 (continuous)

5 +900 Oil 005 + 90 °

6 -90 0" 0 of * 3600 (continuous)

Note:
1) Right hand rule used (implying counterclockwise is + ye).

2) Source : Kerlin System Operators Guide - Version 3.0 / June 1985.

The Direct Kinematic Solution for the Left-Arm Kerlin

The general forward kinematic task is to compute the transformation

matrix relating the tip of the end-effector to the global (or world)

33

coordinate frame of the robot. In the present case, we define the

direct kinematic problem to be the computation of closed form equations

that relate the position of the origin of {6}, and the orientation of

the last link, with respect to {0}. It must be remembered here that the

global frame of the robot is at a height of 46.45 inches above the base

and that the hand roll frame, {6}, is located at the wrist pin.

The direct kinematic problem thus can be defined as the

determination of OT matrix, computable as

OT = T . IT . 2T . 3 T 4T . 5 T (5.1)6 1 *2 3 4 5 *6

The transformation matrices in (5.1) are given by:

c1 -s1 0 0

s1 c1 0 0

1 0 0 1 0 (5.2)

0 0 1

c2 -s2 0 0

1T 0 0 1 d2 d2 18.915"

-s2 -C2 0 0 (5.3)

0 0 0 1

c3 - 3 0 a2

2T c 0 0 a 17.38"

0 0 1 d3 d3 _ -6.915" (5.4)

0 0 0 1

34

c4 -s4 0 0

T 0 0 1 d d4 17.24"
4-4

-84 -C4 0 0 (5.5)

0 0 0 1

c5 -s5 0 0

4T 0 0 -1 0

s5 c5 0 0 (5.6)

0 0 0 1

c6 - 6 0 0

T 0 0 1 0

-86 -C6 0 0 (5.7)

0 0 0 1

According to the principle of concatenation of transformations,

developed in Chapter 3, we have

4T = 4T. 5T (5.8)

Therefore,

c5c6 -c5s6 -s5 0
4T = s6 c 0

60 0

s5c6 -s5s6 c5 0 (5.9)

0 0 0 1

Further, using the principle of transformation matrix concatenation, we

have

35

3T 3T 4~T (5.10)

i.e.

c4c5c6-s4s6 -c4c5s6-s4c6 -C4s 5 0

S5C6 -Ss56 c5 d4
-T= s4CsC6-C4s6 s4c5s6-c4c6 5485 0(.13 - c c C8 s c s0 (5 .1 1)

0 0 0 1

Now, since the joint axes for f2} & f3} are always parallel, we obtain
1T using the trigonometric sum of angle formulas

c23 = c23 s23 and
s23 = s2c3 2 3

to yield a simple result.

Since

I T IT 2T (5.12)
3 2 3

we have

C23 23 0 a2c2
IT = 0 0 1 d2+d3
3 2 3

s23 -c23 0 -a s2 (5.13)

0 0 0 1

Now, as

I -TIT 3T (5.14)

6 3 6

36

we get

Irll Ir12 Ir13 Px

T Ir Ir Ir23 p
1r r23

(5.15)
31 32 33 z

0 0 01

where

lrl c23[c4c5c6 -4s6] s23s5c6
r = c23[c4c5s6 + s4C6] + s23s5s6

r = - [c23c4s5 + s23 C5]

1r21 = -Es 4 c5 c6 + c4 s6]
1r22 = 4 C5s 6 - c4c6

lr23 s4s5

lr31 -s23[c4c5c6 - 846] c2385c6

lr32 = 23[c4c5s6 + s 4 c6] + C2 3 s556
lr33 s23c4s5 - c23c5

1px = -d4s23 + a2c2

py = d2 + d3

Ipz = -d4c23 - a2s2

The final product of all six link transformations is given by

OT OT-1 6T (5.16)

which results in the final OT matrix, given by,

37

rll1 r 12 r 13 Px

r 21 r 22 r 23 P y

OT= r r r p (5.17)

0 0 0 1

where

rll = c1[c23(c4c5c6 - s4s6) - s2 3 s5c6] + Sl[s 4 C5 C6 + c4 s6]

r21 = s1[c23(c4c5c6 - s4s6) - s23s5c6] - Cl[S4C5c6 + c4s6]

r31 = -s23[c4c5c6 - s4s6] - c23 5c6

r12 = c1[-c23(c4c5s6 + s4c6) + s23s5s6] - S1[S4C5S6 - c4c6]

r22 = sl[-c 23(c4c5s6 + s4c6) + s23sS86] + cl[s4c5s6 - c4c6]

r32 = s23[c4c5s6 + s4c6] + c23 s5s6

r13 = -c1[c23c4s5 + s23c5] -S1[45]

r23 = -s1[c23c4s5 + s 2 3c5] + c1[s 4s 5]

r33 = 23c4s5 - C23c5

Px = Cl[-d4s23 + a2c2] - Sl(d 2 + d3)

Py = sl[-d 4s23 + a2C2] + cl (d2 + d3)

PZ = -d4c23 - a2s2

The transformation matrix OT, given by (5.17), completely defines

and locates the position of the wrist pin and orientation of the link
connecting the tip of the Nerlin arm to the wrist pin, with respect to

the base frame. The position of the tip of the lerlin manipulator with
respect to the base frame is easily computable from the above

transformation matrix. This requires the addition of the product of
each term in the 'approach' vector (the third column vector of the OT

6

38

matrix) and the distance between the tip of the arm and the wrist pin

(or the distance between the tip of the arm and the point under

consideration), to the corresponding term in the position vector (fourth
0column in the J matrix). Thus, if 'd6' defines the distance between

the tip of the Merlin 6500 arm and the wrist pin (or the point under

consideration), then the OT matrix can be modified so that the position6

data provided by the transformation matrix OT refers to the end of the
6

arm, as follows :

= T(1,4) = px + d6 . OT(1,3)

p T(2,4) = py + d6 . OT(2,3) (5.18)

P = OT(3,4) = p + d6 . OT(3,3)

The direct kinematic solution could have alternatively been

performed by setting the origin of {6} at the tip of the Kerlin arm (or

at the point under consideration), instead of the wrist pin. This

method would, however, cause computational complications when performing

the inverse kinematic solution for the arm, since the solution process

by Piepers method requires three axes intersecting at a point and the

origin of the three frames for these axes are set at the point of

intersection.

Direct Kinematics for the light-arm Ierlin

We now need to develop the direct kinematics for the right

shouldered Nerlin manipulator. This can be performed either by

repeating the above process completely for the right arm lerlin

manipulator, or by utilizing the solution developed for the left arm

manipulator with adjustments being made to the values of the kinematic

parameters. The former process involves re-assigning frames,

determining the Denavit-Hartenburg parameters and then computing 0T for

the right arm manipulator. The latter process maintains the frame

assignments made for the left arm while adjusting the numeric values of

those parameters that would be affected by the conversion of the left

39

arm to a right arm manipulator, and using the direct kinematic equations

for the left arm robot, given by (5.17).

A close examination of the left- and right- shouldered arms reveals

that they differ kinematically at the shoulder only. We thus adjust the

Denavit-Iartenburg parameters indicated by d2 and d3 to be d2 = -18.915

inches and d3 t 6.915 inches. Equations (5.17), when solved for with

the above values of d2 and d3 , result in the direct kinematic solution

for the right arm Kerlin manipulator.

The Inverse Kinematic Solution for the Lgft-Arm Kerlin.

Since the last three axes of the Kerlin manipulator intersect at

the wrist pin, we adopt an algebraic method (Pieper's) to solve for the

inverse kinematic solution. Since we may be given the position k

orientation of the hand-roll plate, and the origins of frames {4}, {5}

and {6} are located at the wrist pin, we need to account for the

distance between the wrist-pin and the tip of the hand roll plate, which

is L 3.5". This affects the position vector only - the orientation

vector remains unchanged.

The transformation matrix defining the position and orientation is

given by (5.17), and is

rll1 r 12 r 13 Px
OT r2 r2 r2 py
6 212-2

r31 r32 r33 Pz

0 0 0 1

where r1l, r12, ... r33, Px' Py' Pz are specified by the kinematic

equations given in (5.17).

Let d6 be the distance measured from the tool mounting surface to

the wrist pin (d6 = 3.5") and the position of the tool mounting surface

be given by a vector p' = {p P, T, where
Py

40

P' P x r 13

P= P py + d6 . r23 (5.19)

p PZ r33L L;p

Therefore, the position of the wrist pin is specified by

Px Px1 -cl[c 2 3 c4 s 5 + s 2 3c 5] - [S4S5]1

|= p - d6 -s 1 [c2 3c 4s 5 + s23c5] + cl[S4S5] (5.20)

Pz P5 s 2 3 c4 s 5 - c2 3 c5

We now examine the kinematic parameters to determine the number of

solutions that will be obtained when solving the inverse kinematics of

the Kerlin robot.

Since al = a3 = a5 = 0, we determine (from Chapter 4) that the

number of solutions for the left shouldered Kerlin arm will be four in

number. Since a,, a3 and a5 are unaffected by the shoulders

configuration, four further solutions will be obtained for the right arm

Merlin robot. This results in a total set of eight solutions for the

inverse kinematics of the lerlin robot. These solutions can be seen to

include the following configurations for each of the left and right

arms :

1) Inner arm up, outer arm down, wrist roll, wrist pitch.

2) Inner arm down, outer arm up, wrist roll, wrist pitch.

3) Inner arm up, outer arm down, wrist 'flipped' over.

4) Inner arm down, outer arm up, wrist 'flipped' over.

Four similar solutions exist for the Merlin right-shouldered

manipulator.

We now proceed to solve the inverse kinematics of the Kerlin left

arm manipulator. The inverse kinematic solution process requires

solving

41

. = =.=.== .==, . ,m mnmNE • n[[

OT=0T(O, (#) . 'T(02) . T84) . 4 (85) . .TO, (5.21)i i 2 3 4 I I

for $is i = 1 to 6, when 0T is given as numeric values, with the
position vector of OT having been adjusted according to (5.20), if

necessary.

Putting the dependence of 01 on the left side of the equation gives

[T(1)] -I . T = T(02) . T(03). T(04). T(05) . 5T(06) (5.22)

Inverting OT , we rewrite (5.22) as

cI sI 0 0 rll r12 r13 Px

-sI cI 0 0 r21 r22 r23 y T (5.23)

0 0 1 0 r31 r32 r33 Pz

0 0 0 1 0 0 0 1

where 1T is given by (5.15).

Equating the (2,4) elements from both sides of (5.23), we get

-slP x + ClPy = d2 + d3 (5.24)

Substituting

Px = p Cos 0 and

py = p Sin J (5.25)

where p = px2 + py2

and 0 = ktan2 (py,p) (5.26)

into equation (5.24), we get

42

p(Sin# CosO1 - Cost Sine1) = ' 2 + d3

which results in

Sin(O - 01) = d (5 .27)
p

Using

Sin2 A + Cos2 A = 1,

we get

Cos(O - 01) - - , (5.28)

Since we know Sin(- 01) and Cos(O - 01)w we find (#- 0 as

(- 01) = Atan2 2 3 1 2 1

Using the value of p from (5.26), we get

-) = ktan2 [[d2 + d 3] * + [2 + p J2 j (5.29)

i.e.

81 = Atan2(py, Px) - Atan2 d2 + d3J, * p2 + p 2 d (5.30)

In equation (5.30), we have utilized the Atan2 function to
determine the value of 0 V Use of the cosine or arc sine function would

lead to inaccurate, inconsistent and ill-conditioned solutions, since

43

the accuracy of the arc cosine function in determining the angle is
dependant on the angle [Cos 0 = Cos(-0)], while, when Sin 0 approaches
zero, 0 = 00 or + 1800. A more consistent approach is to use the Atan2

function, which returns the value of # adjusted to the proper quadrant.
The Atan2 function is defined as follows

0 < 0 < 90 for + x and + y

90° < 0 < 1800 for -x and + y0 = Atan2(y, x) =- -

1800 < 0 < -90 for -x and - y

-900 < < 0° for + x and - y

Note that, in (5.30), there are two possible solutions to 01,

depending on the * sign in the second term of the equation. The
positive solution is obtained for the left arm lerlin 6500 manipulator,
while the negative solution represents the inverse kinematic solution
for 01 for the right arm Kerlin 6500 manipulator with different frame

assignments than those made for the left arm.
Since 01 is now known, we now know the left side of equation (5.22)

and (5.23).
Equating the (1,4) elements of (5.23), we have

clp x + sipy = -d4s23 + a2c2 (5.31)

Equating the (3,4) elements of equation (5.23), we have

Pz = -d4c23 - a2s2 (5.32)

Squaring equations (5.24), (5.31) and (5.32) and adding, we get

P2 + P P2 = a2 + d 2 2a d s3+ d + d]2

x y z 2 42 24 3 ~ 2 3

44

Therefore,

-2a 2d +2 2 2 [d d 2 d 3 2
44-3 Px y z -

which results in

53 - 2 +2 + +2 a 2 + d3] A j (5.33)3 2a2d4 Px y Pz 2 [d 3+4

Since

s2+ C2 -1
3 3~

we have

3 3

Therefore

53 Atan2[53 s24 (5.34)

where

3 -1 [2 + 2 2 a2 + d]3 (5.35)
3I- ~x ~y z 2 4d+df

2a2 4

Thus, #3 can have two values, depending on the + sign used in

(5.34). Each of the solutions represents the elbow up or down solution.

Both of the above solutions for 03 are valid for the left and right arm

lerlin robot. The values of d2 and d3 that are used in (5.35) will

45

depend on whether the arm solution desired is for the left or for the

right arm.

Equation (5.22) can now be written so that we have the left side as

a function of the known variables 01 and 03 and the unknown 02, as

-1

[OT(2)] OT = 3 T(4 T(05) 'T06 (5.36)

Since

OT-=0 T . T3 1 3

we have

CLC23 -C1623 -sI a2clc 2-sl(d 2+d3)
sic23 -Sl623 cI a2s c2+c1 (d2+d3)

OT(12) = -s23 -C2 3 0 -as (5.37)

0 0 0 1

[e invert [T(02)] using (3.18), to get

-3 as]
C 1 C23 S1C23 -s23 -a2c 3

OT- -CLS23 -SlS23 -c23a2s

-sI cI 0 -(d2+d3) (5.38)

0 0 0 1

Equation (5.36) can now be written as

46

CC23 SLC23 -s623 a2c3 rll r12 r13 Px"

-CS5 1 -S -C 3 r2 r2 r 3T (5.39)
1s23 1- 2 3 a2s3 21 22 r2 3 Py 6

-S1 c1 0 -(d2+d3) r31 r32 r33 Pz

0 0 0 1 0 0 0 I

where

c4 C5 c6-s 4 s 6 -c 4 c5 s 6 -s 4 c6 -C4 s5 0

s 5 c6 -5S6 C5 d4

S s 4c 5 c6 -C4 s 6 s4 c5 s6-c 4 c6 5455 0

0 0 0 1

Equating the (1,4) and (2,4) elements of equation (5.39), we have

ClC23Px + s1c23Py - 823Pz - a2c3 = 0

-ClS23Px _ ls23Py - '23Pz + a2s3 = d4(5.40)

Taking the known terms to the right side of the equation, we have

c23(clPx + slPy) - s23Pz = a2c3

s23(ClPx + slPy) + c23Pz = a2 s3 - d4 (5.41)

Let

A = c1px + slpy

B = z

C = a2c3

D a2s3 - d4

Therefore, (5.41) now becomes

47

c23k - s23B = C]
c23B + s23A = DJ

(5.42)

Solving for c23 and s23 by Cramers rule, we have

e (a2s3 - d4)Pz + a2c3 (ClPx + S1pY) (5.43)
+23 2

-2 (a2s 3 - 2d 4)(clP, + sl1 y) 2- a 2c3Pz 5.4
Pz + (ClPx +2 (cPy)2

and

023 = Itan2[{(a2s3 - d4)(ClPx + S1py) -a2C3Pz

{(a2s3 - d4)Pz + a2c3 (ClPx + Spy)] (5.45)

Due to the four possible combination of solutions of 0 and 03,

there will be a total of four possible solutions for 023- Is such, the

four possible solutions for 02 are computed as

02 = 023 - 03 (5.46)

where the appropriate solution for 03 is used when forming the

difference. Since the computed value of 01 is used in solving (5.45),

and hence (5.46), the left arm (positive) solution for 01 provides the

left arm solution for 02 (which account for two of the four solutions

obtained above), while the right arm solution for 01 (the negative

solution) provides that solution for 02 which is valid for the right arm

only (and which account for the remaining two solutions obtained

48

for 02)

Ve now know the entire left side of equation (5.39). Equating the

(1,3) and (3,3) elements from both sides of (5.39), we get

r13c1C23 + r23s c23 - r33s23 = -C485

-r13 1 + r 23c = s4s5 (5.47)

If, in (5.47), s5 f 0, we solve for 04 as follows

S4 = (-r13s1 +r23cl) -51

5

and

4 (-r13clc23 - r23sIC 23 + 33S23)

Therefore

04 = Atan2[(-r13s1 + r23c1), (-r13c1c23 - r23sIc 23 + r33s23)] (5.48)

If, however, s5 = 0, then 05 = 00 or 1800, and the manipulator is

in a singular configuration, in which the wrist roll and hand roll axes

(z4 and z6) line up and cause the same motion of the last link of the

robot. In such a case, all that can be solved for is the sum or

difference of 04 and 06 This condition of singularity is detected by

checking to see if the two arguments of the Atan2 function of equation

(5.48) are close to zero. If they are, 04 should be chosen to be the

present value (or any other arbitrary value) of the wrist roll angle.

When 06 is computed at the last stage using the present (or arbitrary)

value of 04, it is adjusted according to the value chosen for 04.

49

Considering equation (5.21) again, we now know 81) 02) #3 and 04.

So we rewrite equation (5.21) to get all the knowns on the left side, as
follows:

O2T]I . OT= 4 T(05) . 'T(86) (5.49)

Ve know that

OT= OT 3~T4 3'4

Since
(AB)- 1 (B)- 1)

we have

[OT]-1 [[T]-. [0T]-

Ye compute r4T]-1 using (3.18) and (5.5) as

c4 0 -s4 0

3T]_ 1 -s4 0 -c4 0
4 0 4 (5.50)

0 0 0 1

laying computed [T]1 in (5.38), we solve

OT]- = [3T]- I ['T]-1

to get

50

C1C23c4+SS1 4 S1c23c4-cls 4 -823c4 -a2c3c4+s4 (d2+d3)

O T]-1 1 ClC23S4+SlC4 -BSC23s4-Clc4 023s4 a2c3s4+c4(d2+d3)
4 -C1823 - S23 -c23 a2s3- d4

0 0 0 1

(5.51)

Equation (5.49) can now be written as

[L4]- . ;T= 6T(5.52)

where OT is given by (5.17) and S by (5.9)

Equating the (1, 3) and (3, 3) terms of (5.52), we have

-r13(cic 23c4 + SlS4) - r23(Slc 23c4 - C1S4) + r33s23c4 = 85

-C1s23r13 - S1S23r23 - c23r33 = c5
(5.53)

We therefore solve for 95 as

05 = Atan2(s5, c5) (5.54)

where s5 and c5 are given by (5.53).

Rewriting (5.21) to get the known terms on the left side, we have

[OT]1. OT-5T(06) (5.55)

As before

OT= OT 4 T

51

Therefore

Ye compute [5T] 1 using (3.18) and (5.6) as

S5 0 C5

0 o 0 1

Haigcomputed T] i(55)weslefr T] a

. Cclc3c4'l'4-cls3s5 c,(sc 23c4-cls4)- sls 23s,

OT -1 s8(clc 23 ;4's~s4)-c~s23c5 -s5(slc23c4-c18s4)-s1 23 5,
5I234 - 81 C4 IC2c 4 4

-s23cc,-c3s, {c,(-a2c3c4+s4(d2 +d3)+S5(a2s3-d4)}-

s23c4s,-c23c, {-s5(-a2c3c4+s4(d2+d3)+c5(a2s3-d4)} 5.7
-8234 -2 3 4 - 4(d2+d3)

0 1

Since we know (rT] from (5.7), we equate the (1,1) and the (3,1)

elements of (5.55), to get

{ c,(clc 23 c4 + s 14) -c1s23s5}r11 +

{ c5(s1 c23c4 - c1s4) -s~s 23s5}r21 - {s23c4c5 + c23s5} r3l = c6

- c1c23s4 - sjc41}r,, - {s~c23s4 + c~c4}r21 + {s23s4}r 31 = s6, . 58

52

Ve therefore determine 98 by

6 = Atn2(s, c,) (5.59)

where s6 and c6 are given by (5.58).

Since there are two possible solutions for each of 01 and '3,

equation (5.59) results in a total of four solutions for P.. If the

positive value for 61 is used in solving (5.59), then the solution

obtained for 06 by (5.59) is for the left arm lerlin robot, while if the

negative solution for 01 is used, we obtain the solution for the right

arm erlin robot.

Additional solutions are obtained by flipping over the wrist of the

manipulator, and are given by

= 4 + 180' ,

-0 5 and (5.60)

= + 1801.

After all of the above eight solutions have been computed, some (or

all) of them may ha;e tc, be discarded because of joint limit violations.

Of the remaining valid solutions, it is advisable in most cases to

choose the one closest to the current configuration of the manipulator.

Inverse Kinematics for the light-arm lerlin lanipulator

Of the above eight solutions which constitute the solution set for
the inverse kinematics for the left and right arm lerlin 6500

manipulator, those solutions obtained using the positive solution for 01

represent the inverse kinematic solution for the left arm Kerlin robot,

while the four solutions obtained using the negative solution for 61

represent the solution set for the inverse kinematics for the right arm

53

lerlin robot with adjusted frames.

An alternative procedure for developing the closed-form inverse

kinematics for the right arm Merlin manipulator involves using the same

set of equations developed for the left arm lerlin but adjusting the
kinematic parameters involved in converting from a left arm Merlin robot

into a right arm Merlin. As explained in Chapter 5, this essentially

involves retaining the orientation of the frames assigned to the

individual joints and negating those parameters that will effect the

conversion of the left arm to a right arm Merlin robot, viz. d2 and d3.

Thus, setting d2 ! -18.915" and d3 t 6.915" will result in a left arm

Merlin becoming a right arm lerlin robot. Using the above adjusted

parameter values for the right arm parameters in the left arm (01

positive solution set) equations results in the solution being obtained

for the right arm Merlin 6500 manipulator. The major advantage of this

process is the avoidance of new frame assignments, reduced code in

computer implementations as well as the fact that new frame assignments

and joint angle measurement processes do not have to be followed. This

process has therefore been adopted in the computer implementation of the
equations (Appendix IV).

54

VI VORKSPACE DEVELOPMENT FOR THE MERLIN 6500 ROBOT All

Vorksuaces of ManiDulators

The working volume of a manipulator is called the manipulators

workspace. The workspace of any manipulator is defined as the set of

positions that the end-effector can achieve when the joints vary over
5

the full range of possible values

Eanipulator workspaces are divided into reachable and dexterous

workspaces. The reachable workspace for a manipulator arm is defined as

that volume of space that the manipulator's end-effector can reach in at

least one orientation (Appendix A1.10). The dexterous workspace of a

manipulator is defined as that volume of space which the end-effector

can reach with all possible orientations (Appendix AI.11). The

dexterous workspace of a manipulator is always a sub-set of the

reachable workspace.

Each of the dexterous and reachable workspaces of a manipulator

possess an outer and inner boundary. The outer boundaries are

determinable by the set of positions in Cartesian space corresponding to

the tip of the end-effector (or tool) of the manipulator, when the

joints of the manipulator are taken through their full range of motion.

The inner boundary for manipulators (with the last three axes

intersecting at a common point) are defined by the set of positions in

Cartesian space that the point of intersection goes through when the

joint motions are taken through their full range of motion.

Previous work on manipulator workspace generation has been

performed by a variety of methods 9 "0 '. Since manipulator workspaces

are geometrically complex, it has been found easier to obtain an

understanding of their shape by developing their workspaces in two

dimensions i.e. in planes. The complete workspace is a composite of the

two dimensional workspaces in all three dimensions and can be formed by

overlaying the two perpendicularly, and aligning the axes common to both

planes. The workspaces that are commonly developed for manipulators

consist of the horizontal workspace (a projection of the manipulator

workspace onto a horizontal plane) and the vertical workspace (a

projection of the workspace onto a vertical plane).

The process of two dimensional workspace development consists of

55

the division of the degrees-of-freedom of the manipulator into those
that act in the vertical plane, those that act in a horizontal plane and
those successive degrees-of-freedom that can be combined together to
produce a motion with an axis perpendicular to the axes in which each
joint acts separately.

The Horizontal Vorksuace of the Nerlin 6500 manipulator
The only possible link motions in the horizontal plane that the

Merlin 6500 arm possesses consist of the waist rotation over a range of
294 degrees and the wrist yaw over a range of 180 degrees. The wrist
yawing motion is formed by a wrist roll of 90 degrees, followed by a
wrist pitching motion over the full range of 180 degrees. The
manipulator is therefore kinematically representable as shown in
figure 8.

XOJXAI

YO, YA A

ZOZA (out)

XC
12.00 /HO

SHOULDER

UPPER ARMRM ZB (out) BUPPER ARM

Y B

34.62

Figure 8. The Horizontal Plane Representation
of the Merlin 6500 arm

56

The lerlin 6500 horizontal degrees-of-freedom can be assumed to

form a manipulator with the kinematic parameters as in Table 3.

Table 3. The lerlin 6500 lorizontal Plane Representation
and the Corresponding Denavit-Hartenburg Parameters.

i ai1 a o d. 0i and range
1 range 1

A 00 0 0 + 147 °

B 00 -d (= 12") 0 900 constant

C 00 L" (34.62") 0" 0 to -180'

Using these kinematic parameters, the transformation matrices that
relate each frame with respect to the previous frame can be computed

using the general form of the i lT matrix, given in equation (4.6). It

is required here to determine both the end-points of each link. These

end-points can be determined from the last column, i.e. from the

position vector, of the concatenated transformation matrices. Since the

intersection of the waist and shoulder axes is always at a fixed point,

the graphical origin is located at this point. The process of transform

concatenation can be performed so that the determination of the

end-points is made during the concatenation process.

Using the general form of the transformation matrix developed in

(4.6), we develop the kinematic transform matrices relating each

link-joint system to its previous one. Thus,

c1 -s1 0 0

0 1 c (6.1)
0 0 1 0

0 0 0 1

57

C2 s2 0 -d

IT s2 c2 0 0AT.. 2 2(6.2)

0 0 1 0

0 0 0 1

c3 -s3 0 L

BT 83 c3 0 0(6.3)
C-

0 0 1 0

0 0 0 1

Since

OT-OT A T
B I *B

we have,

C12 -s12 0 -dc 1

OT s12 c12 0 -ds 1 (6.4)
B

0 0 1 0

0 0 0 1

Further, since

OT 0 B (6.5)= BT * CT

we have

58

c123 -s123 0 (-dc, + Lc12)

OT s123 C123 0 (-dsI + Ls12) (6.6)

0 0 1 0

0 0 0 1

From the position vector (last column) of equations (6.4) and

(6.6), we can extract the graphical co-ordinates of the end-points of

the lines representing the kinematic skeleton of the Kerlin 6500

manipulator arm.

We finally need to compute the position of D with respect to the

origin A. From figure 8, we note that {D} is located on the sliding

vector (Y-axis) of {C}, at a distance d6 " from {C}. The position of {D}

in each of the I- and Y- coordinate directions is given by

Dx = Cx + d6 - (-S123)

Dy = Cy + d6 . (c123) (6.7)

The graphical coordinates of each point A, B and C are therefore

determinable from (6.4), (6.6) and (6.7), and are

A =0; A =0x y

Bx = -dcI ; By = -ds1
Cx = -de1 + Lc12 Cy = -dsI + Ls12 (6.8)

Dx = -dcI + Lc12 - d6s123 ; Dy = cs + Ls12 + d6c123

where 's' denotes the sine, and 'c' the cosine, of the sum of the

joint angles in the subscript.

The Vertical Vorkspace of the Merlin 6500 IaniDulator

We now proceed to develop the vertical plane workspace of the

Kerlin 6500 left arm manipulator.

59

Y0
ZO, Z2 (out)\ j

X5 Z 5 (ou t) X3" Z3 X2 XO

Z 5(o *) E (o u t)

Y5 Y3 Y2
- 3,50 i 17.24 : 17.38

46.45

Figure 9. The Vertical Plane lepresentation
of the Kerlin 6500 arm

In the vertical plane, the lerlin 6500 arm can be represented by
its degrees-of-freedom which allow motion only in that plane. These
degrees-of-freedom are the Shoulder Pitch, Elbow Pitch and Wrist Pitch.
Thus, with the base frame origin setup according to the graphical X, Y

and Z coordinate system, we are able to represent the manipulator arm as
shown in figure 9.

This system possesses the following Denavit-Hartenburg parameters

(summarized in Table 4)

60

Table 4. The Kerlin 6500 Vertical Plane Representation
and the Corresponding Denavit-Kartenburg Parameters.

ai1 ai_ 1 di pi and range

2 00 = 00 a0 = 0" d2 = O" + 2360 to -56°

3 a2 = 00 a2 = 17.38" d3 = 0" + 1460 to -146"

5 a4 = 00 a4 = 17.24" d5 = 0" + 90 to- 90

Now, using the general form of lilT, given by (4.6), we have

C2 -s2 0 0

T c2 0 0 (6.9)

0 0 1 0

0 0 0 1

C3 -s3 0 a2

T = s3 c3 0 (6.10)
3

0 0 1 0

0 0 0 1

and

c5 - 5 0 a4

3T c5 0 0 (6.11)

0 0 1 0

0 0 0 1

61

Using the principle of transformation matrix concatenation, we have

OT= 0 T . 2 T
(2

3 2 3 (.2

which results in

C23 -s23 0 a2c2

OT s22 c23 0 a2s 2
3(6.13)

0 0 1 0

0 0 0 1

Ve extract the I- and Y- coordinate positions of {3} from the
position vector of (6.13) to get

Bx = a2 c2 and

By = a2 s2 (6.14)

Further, since we have

0T = . 3T (6.15)

we get

c235 - s235 0 a2c2 + a4c23

0T s235 c235 0 a2s2 + a4s23 (6.16)
0 0 1 0

0 0 0 1

From (6.16), we extract the position of C, given by

62

CX = a2c2 + a4c23

Cy = a2s2 + a4s23
(6.17)

Since {D} is d6 " away from {5}, along the normal vector (X5), the

position of D can be computed as

Dx = Cx + d6.c235

Dy = Cy + d6.s235

i.e.

Dx = a2c2 + a4c23 + d6c235

Dy a2s 2 + a4s23 + d6s235 (6.18)

Since we now know all the endpoint positions, we can develop the

workspace of the manipulator in two planes (the horizontal and the

vertical), given the range of motion of each joint. A computer

simulation of each of the planar workspaces of the Merlin 6500

manipulator workspace was performed and the results are shown in figures

10 and 11. The source code listings used to generate the vertical and

horizontal plane workspaces (using Fortran and the DISSPLI graphics

package) are given in Appendix V.

63

SHOULDER STEP SIZE 9.125 DEGREES
ELBOW STEP SIZE -9.125 DEGREES
WRIST PITCH STEP SIZE - 10.0 DEGREES

BA E LEVEL
MERLIN 650'0 VERTICAL WORKSPACE

Figure 10. Computer Simulation Results of the
Meelin 6500 Vertical Plane Workspace.

64

WAIST STEP SIZE = 1.0 DEGREES
WRIST YAW STEP SIZE - 5.0 DEGREES

BAS LIN[

MERLIN 6500 HORIZONTAL WORKSPACE

Figure 11. Computer Simulation Results of the
Merlin 6500 Horizontal Plane Workspace.

65

VII THE UTAH/NIT DEXTEROUS HAND

Previous work

The kinematics of articulated hands has been examined in detail

previously12, while that of the Utah/MIT dexterous hand has been solved

by Narasimhan13 . The present work differs from that performed at NIT in

that the frame assignments have been performed with a base frame set up

at the intersection of the 0th joint axis for the middle finger and the

thumb. Further, the origin of the frames for joint 0 of each finger has

been located at the intersection of the axis of joint 0 with the a.1

perpendicular to axis 0 and which passes through joint 1. The process

of direct kinematic closed-form equation development for the dexterous
left- and right- hand has also been presented in detail. The current

work has been performed keeping in mind the fact that the Utah/MIT

dexterous hands have to be attached to manipulators for dexterous
tele-operation purposes. Further, the current work proceeds to examine

the differences in the direct kinematics of the left- and right-

dexterous hands and proposes a minimal-change method for solving the

direct kinematics of the right hand, using the closed-form equations of

the left hand. The major advantage of such a method is that the direct

kinematics of one dexterous hand only has to be programmed, since

changes to the values of the appropriate Denavit-Hartenburg parameter

values will allow for switching from the left to the right hand, and

vice-versa.

Direct Kinematics

The generalized process of direct kinematic closed-form equation

development has been dealt with in Chapters 4 and 5. The frame

assignments for the left-fingered Utah/MIT dexterous hand is as shown in

figures 12 and 13, and follows the basic frame assignment procedure

outlined in Chapter 4.

The direct kinematic analysis of the Utah/MIT dexterous hand

involves the division of the hand into four manipulators, viz. the

thumb, finger 1, finger 2 and finger 3. Finger 1 denotes the finger

situated on the thumb side of the palm, finger 2 the middle finger and

66

-X X

0 N NO0 N

CV) Cr)

0 0 '0T. .. I C

>

X

cu-

N N CN
CC

-~
TopVie

67

oNo

cu~

cuu

C-4

X3X

- Sid Vie

GE J X -, 5- :3 168

finger 3 the finger situated on the opposite side of the palm from the

thumb. Since the fingers 1, 2 & 3 are kinematically similar with

respect to the base frame {0}, except for the offset along 10, i.e. a0,

we will let a0 be a variable depending on the finger we are referring

to.

Further, since we are dealing with a multiple manipulator system, a

trailing sub-script 't' will be used to refer to the thumb while 'f'

(f = 1, 2 or 3) will be used to refer to the fingers 1, 2 or 3.

Thumb Kinematics

The direct kinematic closed-form equations for the thumb are now

developed with respect to the common base frame.

Denavit-lartenbur; Parameters for the Thumb

We now develop the Denavit-Iartenburg parameters for the thumb,

following the rules developed in Chapter 4. The joint variables for

each joint are the joint angles, Pi (i = 1 to 4). We have again adopted

the right-hand rule (counter-clockwise is positive) for determining the

sign of the angles.

Table 5. The Denavit-Hartenburg Parameters for the
Thumb of the Utah/NIT Hand.

ai-1 ai 1 di Joint Kinematic

(degrees) (inches) (inches) Variable Range of 0.
Si (degrees) 1

(degrees) ,7 14, 15)

a1 = 00 a,= -0.75" d 3.125" 00 -450 to -1350

2 a2 = 900 a2= 0.375" d2 O" o -150 to +600

3 a2 = 0' a2 = 1.7" d3 = o" 0 +6.50 to +90G

a3 = 00 a, = 1.3" d4 =0" 0 00 to+900

69

Thumb Transformation latrices:
The thumb transformation matrices are developed using the i.lT

matrix developed in Chapter 4 and is given by equation (4.6).

c1 -s1 0 ao

0T sI cI 0 0 =0 °

= 1 0 Since ao =0 (7.1)0 0 1 d

0 0 0 1

C2 -s2 0 a1

IT 0 0 -1 0 Since a = 900 (7.2)2t 2 2 0 0 and d2 = 0"

0 0 0 1

c3 -s3 0 a2

s 53 C3 0 0 = 0°
3t 0 0 1 0Sincea 2 (7.3)

and d3 = o"
0 0 0 1

c4 -s4 0 a3

s4 c4 0 0 =0
T 4 0 0 0 Since a3=00 (7.4)and d4 = 0"

0 0 0 1a

Direct Kinematic Equation Development for the Thumb

For the thumb, the direct kinematic closed-form equations can be
developed using

OT =-OT IT 2T 3T (7.5)4 t1 t 2 t 3 t '4 t

Now

OT = OT IT 2T (7.6)
4 t It 2 t4 t

70

where

2T =-2T 3T (7.7)
4 t 3t -4 t

From (7.7), we have

c34 -s34 0 a2 + a3c3

2Tt 34 c34 0 a3s3
0 0 1 0

0 0 0 1

Further, from (7.6),

OT =-OT 1T (7.8)
4 t It~ 4t

where

1 T = T 2T (7.9)
4 t2 t 4 t

From (7.9), we have:

c234 -8234 0 l+a2c2 +a3c23

I- (7.10)
4t 8234 C234 0 a2s2+a3823

0 0 0 1

From (7.8) we have

CLC234 -CLS 234 sI a0+Cl(al+a 2c2+a3c23)

OTt S1C234 -S S234 -C1 sl(al+a2c2+a3c23) (7.11)
4 t s234 c234 0 a2s2+a3s23+d1

0 0 0 1

71

The above matrix represents the position of the origin of {4} with
respect to the base frame {0} and the orientation of the last link with

respect to the base frame {O}.

Position of Points on the Last Link

The position of any point on the last link of the thumb which is
"L" inches from the Prigin of frame {4}, is given by

PxI = P + nx . L where Px = 4Tt(1,4) and nx = Tx x x 44t11

P; = Py + ny . L where py = Tt(2,4), and ny = 4Tt(2,1) (7.12)

0 -T Tt 31
P) = Pz + n . L where pz = Tt(3,4), and nz = (3,1)

Finger Kinematics

The direct kinematics for the fingers are now developed with

respect to the common base frame.

Denavit-Iartenburg Parameters for the Fingers

We now proceed to develop the Denavit-Hartenburg parameters for the
fingers of the Utah/NIT dexterous hand. We develop these parameters
using the convention outlined in Chapter 4. We have also adopted the
right-hand rule (counter-clockwise positive) for determining the sign of

angles.

Here, a, depends on the finger we are referring to. Thus,

a, = -1.375" for finger 1, a, = 0" for finger 2 and a, = 1.1875" for

finger 3 for the left hand.

It must be mentioned here that the frame assignments are similar

for all the fingers, and so the kinematic parameters for the different
fingers vary in one regard only, viz. ao - the offset along the palmar

surface.

72

Table 6. The Denavit-Hartenburg Parameters for the
Fingers of the Utah/MIT land.

Oi_ 1 ai_1 di Joint linematic

(degrees) (inches) (inches) Variable ange of
i rdegrees) 1

(degrees) 17, 14, 15

-1.375" 0
a= _ o= _12o a,= 0" d = 4.25 + 0 +650 to

1.1875"1 2 O-8 1 +115
1.2Cos300

2 a2 = 90 a,= -0.6" d2 = o" 0 +1200
2 to +191*

3 a2= 0 a2= 1.71 d3 =" 3 +350
2= 31 to +90"

a=00 a3 = 1.3" d = 0 i
4 +90

Finger Transformation Matrices:

The finger transformation matrices are obtained using the general

form of the i IT matrix developed in Chapter 4 and given by (4.6).

c1 s1 0 a of
cs 1 cc 1 s s~d1 0

Tf = -s0sI c I c C dl Since ao = -0 (= -120) (7.13)
1- -Sc C O c da o

00f (f =1, 2 or 3)

C2 -s2 0 a1
0 0 -1 00

T = 0 2 0 0 Since a 900 (7.14)
and d 2 = 0

0 0 0 1and=

c3 -s3 0 a2

2Tf = 3 C3 0 0 S 00 (7.15)
3 0 0 1 0 Sincea 2 (15

and d3 = 0
0 0 0 1

73

c4 -s4 0 a3

s4 C4 0 0 = 004f 0 0 1 0 Sincea3 (7.16)

0 0 0 J and d4 = 0"

Direct Kinematic Equation Development for the Fingers

The closed-form direct kinematic equations for the fingers can be

developed using

OT =T IT. 2T 3T (7.17)
4 f If 12f 3 f 14 f

Using the process of transformation matrix concatenation, we have

OT =-OT I T 2T (7.18)
4 f -1 f 2 f 1 4Tf

where

2T =-2T 3T (7.19)
4 f 3f *4f

From (7.19), we solve for 2Tf as

C34 -s34 0 a2+a3c3

2T s34 c34 0 a3s3
4 0 0 1 0

0 0 0 1

From (7.18), we can write

OT = 0T IT (7.20)
4 f 1 f 4 f

where

IT = 1 T (7.21)

4 f 2Tf 4 f

74

Ye therefore compute 1Tf using (7.21), to get

c234 -s234 0 a1+a2c2+a3c23
0 0 -10

4Tf s234 c234 0 a2s2+a3s23

0 0 0 1

Igain, from (7.20), we get

CLc234 -CL8234 sI aof+c1 (a1 +a 2c2+a3c23)

c0sLC234 -C0sls234 -c0c 1 s d1+C0sl(al+a2c2+a3c23)

+s 234 +s c234 +s,(a 2s2+a3s23)

Tf = _0s 1c234 s s1s234 S C C c0d 1-SS(a+a2c2+a3c23)

+C s234 +C '234 +c#(a2s2+a3S23)

0 0 0 1

(7.23)

The above matrix represents the position of the origin of {4} and

the orientation of the las' link of the fingers with respect to the base

frame {O}.

Positions of Points on the Last Link

The position p' of any point on the last link of the fingers which

is 'L' inches from the origin of frame {4} is given by

P =p + nx "L where Px = Tf(1,4) and nx Tf(1,l)

'= y .L where p = and ny = 0 T (7.24)and nZ24

P9 = pz + nz L where p= Tf(3,4) and nz (3,1)

Equations (7.11), (7.12), (7.23) and (7.24) represent the direct

kinematics of the Utah/NIT dexterous left hand.

75

The Direct Kinematics of the Utah/KIT light land

For the right Utah/lIT dexterous hand, the direct kinematics can be

developed in one of two possible ways, viz. by going through the

procedure outlined above, with new frame assignments for the right hand,

or by using the frames assigned previously and the equations developed

above and adjusting the numeric values of the Denavit-Hartenburg

parameters to correspond to a right hand.

Ve have adopted the latter procedure, and have developed and

simulated the direct kinematics of the right hand by changing the sign

of the a0 parameter for the thumb and fingers. Thus, for the thumb,

a0 = + 0.75" (7.25)

while for the fingers, the value of a0 is given by

1.375" for finger 1
a 0 0" for finger 2 (7.26)

-1.1875" for finger 3

The above adjusted values of the parameters can be used with the

direct kinematic equations given by (7.23) to obtain the direct

kinematics of the right Utah/NIT dexterous hand.

76

VIII THE SIKULATION PROGRAX

Introduction
The objective of this computer graphical simulation is to model the

kinematic behavior of the lerlin 6500 robot arm and the Utah/NIT

dexterous hand, when joined together in user-defined combinations. The

aim is to allow a user to simulate and study different kinematic joint

arrangements between the Kerlin robot and the Utah hand and move the

combined systems together in three dimensional space. This should

provide the user with the capability of investigating various strategies

for physically attaching the Utah/1IT hand to the end of the arm, in

terms of the ranges of motion and also the total workspace of the

combined system.

Robot Simulation

The simulation adopts the methodology of depicting links by

six-sided figures, thus closely approximating the actual system. Each

of the links consist of a system, and are connected at the ends to other

links (or systems) by joints. All of the joints of the Utah/KIT

dexterous hand (sixteen) and the Kerlin manipulator (six) are revolute

in nature.

The Link Dimensioning Approach

The method used to graphically depict a robot involves breaking the

subject robot into sub-units (links) and modeling these sub-units using

a six-sided (cubic) figure by using the geometrical spatial

relationships of each link's corners.

It is assumed that each link can be represented by a six sided box.

The box is dimensioned to be able to closely contain the dimensions of

the real link being represented. It thus takes eight points to describe

a link. Picture-perfect accuracy is sacrificed with this method, but

accurate link orientations can be achieved. The points are measured

vectorially with respect to a local origin which is the point of

rotation or translation for that particular link of the manipulator.

Each link of a robot is related to other links by means of translation

and rotation vectors which are defined with respect to the local origin

77

of the link. The point, translation and rotation vectors can be be

stored in a data file that holds all the information necessary to model

a manipulator.

Data Files

The eight point vectors defining a link are stored in a specific

manner. The first row of eight numbers defines the 1-coordinates of the

eight points of the link. The second row defines the Y-coordinates,

while the third row defines the Z-coordinates. Thus a 3 x 8 matrix is

needed to represent each link. For example, a link may be defined as in

Table 7.

Table 7. Link Definition in Data Files

Corner number -. 1 2 3 4 5 6 7 8

AxesI

X-coordinates 8 8 8 8 0 0 0 0

Y-coordinates 2 2 -2 -2 2 2 -2 -2

Z-coordinates 2 -2 2 -2 2 -2 2 -2

Rotation and translation vectors are also stored in a specific

manner. The first row is the X, Y and Z coordinates of the translation

vector while the second row is the rotation vector, consisting of

rotation angles about the X, Y and Z axes. An example of the rotation

and translation vectors, as stored in the data file, is given in

Table 8.

Once the dimensions for each link of a system is stored in a data

file in a form that can be read into the program, the system is defined

for the purposes of modeling. Point vectors are stored in order of link

sequence as one group, while translation and rotation vectors are stored

in order of link sequence as another group. In the main program, arrays

are dimensioned to store the dimensional values of a link. I data point

78

Table 8. Rotation and Translation Vectors Stored in Data Files

Coordinate Y Z

It It It

Translation vector 30 0 5

Rotation angles 900 00 00

array (an example is POINTS) is dimensioned as POINTS(8,3,I,J), where 8

denotes the number of points in each link, 3 the number of coordinate

dimensions, I the number of links in the system and J the number of

systems. The translational/ rotational array (an example is GO) could

be dimensioned as GO(3,I,J,K), where 3 denotes the number of dimensions,

I = 1 the translational vector and I = 2 the rotational vector, J the
number of links and K the number of systems.

Link Dimensioning

The robot model is made up of a series of links, for example the

base link, stand, waist, upper arm and lower arm. The origin of each

link is the point of rotation of the joint. The dimensional

relationship between each link must be defined. The notation necessary

to relate one link to the previous link is a translation vector and a

rotation vector. The link translation vector originates at the previous

link in the open kinematic chain and ends at the origin of the current

link. It is defined with respect to the previous link's coordinate

system. The rotation vector relates the orientation of the current

coordinate system to the previous coordinate system.

Rotational transformation must occur in a fixed order, viz.
rotation about the X-axis first, followed by rotation about the Y-axis

and finally, if necessary, about the Z-axis. (The Z-rotation component

is currently left as zero, thereby saving that component for use as a

dynamic rotation in the program). For a link with a coordinate system

translated 30 units in the I-direction and offset 5 units in the
Z-direction, with a 90 degree rotation about the X-axis, the vectors

79

would be represented in a data file as in table 9.

Table 9. Link Translations and Rotation Angles.

Coordinate I Y Z

It ft ff

Translation 30 0 5

Rotation angles 900 00 00

The first row defines the translational vector components in the X,

Y and Z coordinate directions and the second row defines the rotation

angles about the X, Y and Z axes. These values are used to fill the

transformation matrix for a specific link.

Coordinate System Transformation

The orientation of each link is defined with respect to the

previous link using rotation and translation vectors. The values of the

vectors are measured with respect to the previous coordinate system.

The vectors are loaded into a transformation matrix by using input data

from the matrix [GO] to form the transformation matrix [Tit]. The

following equations are used to determine each component of the matrix

[TR]

GO(1,1,L,S) = Translation in the I direction

(L is the link number and S is the system number)

GO(2,1,L,S) = Translation in the Y direction

GO(3,1,L,S) = Translation in the Z direction

GO(1,2,L,S) = Rotation about the X axis

(Counterclockwise is deemed positive),

GO(2,2,L,S) = Rotation about the Y axis

GO(3,2,LS) = Rotation about the Z axis

The transformation matrix, TR, is formed using

TR(1,1,L,S) = COS(GO(3,2,L,S)) * COS(GO(2,2,L,S))

TR(1,2,L,S) = -SIN(GO(3,2,L,S)) * COS(GO(2,2,L,S))

80

TI(1,39LS) = SIN(GO(2,2,LS))

TI(1,4qLS) = GO(1,1,LS)

TK(2t1,LqS) = COS(GO(3,2,L,S)) * SIN(GO(2,2,L,S))*

SIN(GO(1,2,L,S)) + SIN(GO(3,2,L,S)) * COS(GO(1,2,L,S))

TR(2,2,L7S) = -SIN(GO(3,2,L,S)) * SIN(GO(2,2,L,S)) *

SIN(GO(1,2,L,S)) + COS(GO(3,2,L,S)) * COS(GO(1,2,LS))

TI(2,3,LS) = -COS(GO(2,2,L,S)) * SIN(GO(1,2,L,S))

TI(2,49LS) = GO(2,1LS)

TIt(3,1,LS) = -COS(GO(3,2,L,S)) * SIN(GO(2,2,L,S))*

COS(GO(1,2,L,S)) + SIN(GO(3,2,L,S)) * SIN(GO(1,2,L,S))

TR(3,2,LS) = SIN(GO(3,2,L,S)) * SIN(GO(2,2,L,S)) *

COS(GO(1,2,L,S)) + COS(GO(3,2,L,S)) * SIN(GO(1,2,L,S))

TR(393,LS) = CUS(GO(1,2,LS)) * COS(GO(2,2,L,S))

TR(3,4,L,S) = GO(3,1,L,S)

TR(4,1,L,S) = 0

TI(4,2,L,S) = 0

TR(4,3,L,S) = 0

TK(4,4,L,S) = 1

The notation used for transformation from {B} to fl} is BTA (B

transformed to A). To describe points in {C} with respect to fl}, the

transformation matrix BTA must be premultiplied by the transformation

matrix CTB. This operation is performed in each link so that points in

each link can be defined in the base or global coordinate system. Ye

need to know the definition of the coordinates of a point defined in {C}

in the coordinate system of {A}. To f ind this, it is necessary to

multiply the transformation matrix CUA by the vector defining the point

in {C}.

To get the vector coordinates of a point in a link in the global

system, the (41) transformation matrix is multiplied by a (411) vector

composed of the three coordinates of the point and a 1 in the fourth

row. The result of the product is the definition of the vector in the

global system. This operation has to be performed for all links in all

systems.

Once the dimensions of each point of each link are known in the

global system, the three dimensional points must be transformed into two

81

dimensional screen drawing points.

A perspective view is desired, where objects appear to be shrinking

with increasing distance. This requires choosing a focal point, defined

in global I and Y coordinates, and a viewing point (or VPOINT

distance along the global Z axis).

A drawn view really has tunnel vision, it can only 'see' objects

that are within a 20 degree cone directly in front of the viewer.
Imagine two lines, one drawn from the viewpoint to the global origin and

the other drawn from the viewpoint to a point defining a link. If this

angle between these two lines is zero, the point will be assigned 2-D

coordinates of (0,0). If the angle is equal to 20 degrees, the 2-D

coordinates will be assigned coordinates corresponding to the edge of

the screen. If the angle lies between 0 and 20 degrees, the assigned

2-D coordinates will be assigned proportional to the angle. If the

angle is greater than 20 degrees, then the point will not be shown in

the view.

Once the 2-D coordinates of all points are known, a graphics

package can be employed to connect lines between the appropriate points

so that the cubes defining the links can be drawn. The robot thus
consists of a series of links assembled together at the joints.

The Graphics Software Menus

The graphics package operates using a VT 240 or a Tektronix 4010

screen. It is organized to be user-friendly, and thus incorporates a
main menu and sub-menus. The organization of the menus and sub-menus

follows a logical pattern determined by user operations. The program
begins with a main menu and two sub-menus. The main menu is the entry
point for both the sub-menus as well as the program exit point. One of

the options in the main menu also allows the user to see the system, as

currently defined, on the screen.

Major sub-menus consist of the setup and operations menus. The

set-up sub-menu allows the user to perform the tasks of defining the
system in terms of the viewpoint, the focal point and the factor of

magnification for subsequent views, which J the possible systems (the

room, left/right arm Merlin, left/right Utah/KIT dexterous hand) are to

be drawn, the relative position of the Utah/MIT hands with respect to

82

the end of the Merlin arms, the positioning of the robots in the room,

drawing the systems as curre:-y defined, which of the two possible

remote slave systems is to be currently active (only one slave system is

active at any one time) and finally, returning to the main menu.

The Execution sub-menu allows a user to move the individual joints

of the selected systems, viz. the Merlin and the Utah/MIT hand, to save

a view and to recall a saved view, to move the Merlin from its current

position to another point, defined by its position and orientation, to

move all joints of the robot, in user-defined steps, and to return to

the main menu.

Each item in each of the menus is discussed in more detail below.

The lain Menu

The user chooses one of the following options from the main menu

Go to the setup menu.

Go to the execution menu.

Draw the system, as currently defined.

Exit from the program.

The Setup Menu

The set-up menu consists of the following options, each of which is

explained below

VIEVPOINT

The position in global coordinates the the robot is to be viewed

from is chosen by this operation. The global origin is located at the

lower, far left corner of the room. On the screen, 'X' is positive

towards the right, 'Y' is positive towards the top and 'Z' is positive

coming out of the screen.

FOCUS AID MAGNIFICATION

The focal point is defined in screen coordinates as (0,0) and is in

the center of the screen. The focal point is not in global coordinates,

which factor may cause confusion when the viewpoint is changed and the

focal point is not (0,0). Each view, no matter what the viewpoint, has

83

a unique screen focal point, i.e. (0,0). Any new focal point for a

specific view is measured with respect to the focal point at (0,0).

The user may define the magnification for a specific view.

Increasing the magnification will make the objects being viewed appear

larger. A point in the center of the screen will remain in the center

of the screen.

SYSTEIS DRAVING

The following are defined as systems:

The Room in which the slave systems are placed,

A Left-Arm Kerlin Robot,

A Left Utah/KIT dexterous hand,

A Right-Arm Kerlin Robot,

A Right Utah/lIT dexterous hand.

Prior to any specific view, the user may choose to enable or

disable the drawing of any of the above systems. After selecting this

option, a menu is displayed, prompting the user to choose one of the

available options related to drawing (or not drawing) a system.

FIXED EAID POSITIONING

The fixed position of the Utah/lIT hand relative to the lerlin

wrist may be changed by the user. The base coordinate system of the

hand is related to the wrist coordinate system by a translation vector

and a 90 degree rotation about the 'X' axis of the wrist coordinate

system. The hand can be positioned with respect to the robots hand roll

system by a translation vector and a rotation vector. After selecting

this option, the user is prompted to define these vectors.

IEPOSITION IOBOT

The robot may be positioned anywhere in the room. The origin of the

room coordinate system is the far left, bottom corner of the room as

seen in the initial view. The position of the robot is defined by a

vector from the origin of the room to the center of the base of the

robot. The program prompts the user for input necessary in redefining

this vector.

84

ChNGB ACTIVE OBOT

Robot positioning and reconfiguring is performed working from the

menus during the operation of the program. It is possible for two

robots to be viewed at the same time. However, only one robot is deemed

active at any one time. This opticn allows the user to choose which

robot is the one to be acted upon at any one time. This allows for

multiple arms to be used in simulations.

RETURN TO IUINI IENU

Choosing this option returns the user to the main menu.

DtV ROBOT

This option provides a view of the systems, as currently

configured.

The Execution Ienu

The execution menu possesses several options, each of which are

discussed below :

JOVE ROBOT JOINT AINCLES

Each of the joint angles of the Merlin robot can be moved

individually. Once this option is chosen, another menu will be

displayed pr. Ating the user to choose the link to be repositioned.

Once a link is chosen, the user is informed of the current angle and is

prompted for the desired joint angle in degrees. After input, the link

menu is displayed again until the user requests an exit from that menu.

ROVE INDIVIDUAL FINGER JOINTS

Each of the Utah/KIT hand's joint angles can be moved individually.

Once this option is chosen, another menu is displayed prompting the user

to choose the finger to be repositioned. Once a finger is chosen, a

third menu is displayed prompting the user to choose the joint to be

repositioned. Next the user is informed of the current specified joint

angle and is prompted for the desired joint angle in degrees. After

input, the joint menu is displayed again until the user requests to exit

that menu, following which the finger-choosing menu is displayed until

q5

an exit is requested.

SAVE TIIS VIEV

If a user wishes to leave his work and resume later at the ending

point of the last session, this option will store the current parameters

that define the configuration of the present view. These parameters are

written to a file named 'SAVE.DAT'. Only one view can be stored during

the course of a program run. A second save will write over the first

save. After leaving the program, the save file could be renamed to

avoid being written over by a future run. If this renamed file is to be

used in a program, it will need to be copied to 'SAVE.DAT' prior to

running the program.

D1AV IOBOT FlOX SAVED DATA FILE

The user may resume work from a previously saved parameter file.

After selecting this option, the next view drawn will be defined by

parameters read from a file named 'SAVE.DAT'.

MOVE ROBOT TIP POINT TO POINT

This option uses the inverse kinematics of the Merlin robot arm to

move the tip of the Merlin arm from the current position to the user

defined position. The goal (or desired) position is chosen by

specifying the desired position and orientation of the tip of the Kerlin

manipulator, relative to the global frame of the Merlin (defined in

Chapter 5). The user also has to select the desired joint angles from

the computed set of valid angles that are determined by the inverse

kinematic computation. The file INKIN.FOR has to be compiled and linked

to the simulation program for this option to be active.

lOVE LL JOINTS OF THE ROBOT, IN STEPS

The user will be prompted to enter a complete set of six joint

angles and the number of steps. The user also chooses to either erase

between views, or to draw each view on the same screen.

Figure 14 shows a succession of positions, detailing the robot's

movements from the current position to the position defined by the set

86

of angles that were entered by the user. The number of views is
determined by the number of steps. Intermediate angles are computed by
interpolation of the initial and final angles.

87

L

Figure 14. The Computer Graphical Program
- Simulation Results.

88

II CONCLUSIONS

The Results

This study has presented the methodology and mathematics of

kinematic analysis in chapters I, II, III and IV, followed by the

derivation of the direct and inverse kinematic closed-form equations for

the Kerlin 6500 left- and right- shouldered manipulator in chapter V. A

graphical simulation proceedure and results of the planar workspace for

the Kerlin 6500 left-shouldered robot arm is detailed in chapter VI.

The study then proceeds to examine the development of the direct

kinematic closed-form equations for the Utah/NIT dexterous hand in

chapter VII. This is followed by a discussion of the computer graphical

simulation for the lerlin and Utah/NIT dexterous hand, when combined in

user defined configurations, detailed in chapter VIII.

Further York

The current study has examined only the direct kinematics of the

Utah/IT dexterous hand. As the slave system is driven from a remote

location by a human arm encased in an exo-skeleton, and since it is

necessary for the slave system to grasp objects at the same position and

with the same orientation as the driving master system, it becomes

necessary to perform kinematic transformations between the master and

the slave systems. These transformations will typically involve the

direct kinematics of the human hand, whose output data can be utilized

as an input to the inverse kinematics of the Utah/NIT hand, thus

allowing for objects to be grasped by the slave system in a similar

fashion to the master system. Thus, a study of the kinematic mapping

between the human hand and the Utah/MIT hand must be made, so that when

the activating system (the human arm) grasps an object, the remote

system follows it in action. Lastly, there is a need to study the

mechanism of object grasping by the human hand as well as by the

Utah/KIT hand, for different object geometries. This will permit the

Utah/KIT hand to grasp and manipulate the remote object in as dexterous

a fashion as the human arm.
The current study notes the existence of the remotizer of the

Utah/NIT dexterous hand and the constraint it poses for the operation of

89

the remote system. A further study must also deal with the effect of

the remotizer on the use of the Utah/NIT hand as an end-effector for the
slave system. This would typically involve studying the effect of the

remotizer on the workspace of the remote slave system, such that the

workspace would be a maximum without undue effect on the remotizer

links.

90

APPENDICES

91

APPENDIX 1

DEFINITIONS

In any scientific study, it is necessary to make clear the meaning

of certain technical words that are being used, so as to avoid confusion

in their use by different users with varying backgrounds. As such,

certain key words used in this study are explained below :-

A1.1 Kinematics Kinematics is the science of motion which treats

motion without regard to the forces that cause it. Vithin the science

of kinematics, one may study the geometrical properties of motion or the

time derivatives of position. We limit the present study to the

geometrical properties of motion.

A1.2 Manipulator (or Robot) A manipulator is kinematically defined to

be a set of nearly rigid links connected together in a chain by joints

which allow relative motion of the neighbouring links. In the case of

rotary or revolute joints, the displacements are joint angles, while in

the case of sliding or prismatic joints, these displacements are joint

offsets.

A1.3 Degrees of freedom The degrees of freedom present at any

joint of a mechanism are computable as the number of independent

position variables that need to be specified to locate specific parts of

the mechanism. In the case of typical industrial manipulators, since

such a manipulator is usually an open kinematic chain, and

92

because each joint position is usually defined with a single variable,

the number of joints equals the number of degrees of freedom. Each

joint may, however, possess one or more degrees of freedom.

A1.4 Frame A frame is defined to be a co-ordinate system attached to

a joint of a manipulator. The end-frame is generally attached to the

tip of the manipulator or to the last joint of the open kinematic chain,

while the base frame is generally attached to a non-moving component of

the manipulator. In this report, a frame is always referenced by the

character inside f}.

A1.5 Cartesian space is defined as the space in which the position

of a point is given by three position data values along the three

orthogonal axes, 1, Y and Z, while the orientation of a body is given by

three orientation data value sets.

A1.6 Joint Space is defined as the space in which the position of a

point, and the orientation of a link, are defined in terms of the joint

variable (or degrees of freedom).

A1.7 Forward Kinematics The forward (or direct) kinematic problem is

defined to be the computation of the position and orientation of the

end-effector frame relative to the base frame. This problem can also be

thought of as changing the representation of manipulator position and

orientation from a joint space description into a Cartesian space

description.

93

A1.8 Inverse Kinematics The inverse kinematics problem is defined to

be the computation of the joint variables when the position and

orientation of the end-effector frame is known with respect to the base

frame. This problem can also be thought of as changing the

representation of manipulator position and orientation from a Cartesian

space description to a joint space description.

A1.9 Vorkspace The work-space of a manipulator is defined as the

set of positions which the end-effector can achieve when the joints

degrees of freedom vary over the full range of possible values.

A1.1O Reachable work-space The reachable work-space of a manipulator

is defined as that volume of space which the robot end-effector can

reach in at least one orientation.

AI.11 Dextrous work-space The dexterous work-space of a manipulator

is defined as the volume of space which the robot end-effector can reach

with all possible orientations. The dexterous work-space of a

manipulator is always a sub-set of the reachable work-space of that

manipulator.

94

APPENDIX 2

ROTATION AND TRANSLATION EATRICES

In chapter IV, we derived the general form of the transformation

i 1T by using equation (4.1) to (4.5). Equation (4.4) involved1

rotations and translations about the Xi and Zi axes. These rotation and

translation matrices are shown below, in general terms.

Let us first examine a rotation of ao about the X axis. The

transformation matrix is given by

S00

Rot(X, a) 0 Cos a -Sin a

0 Sin a Cos a

A translation along the X axis by a distance of 'a' is given by

0 0 a

Trans(X, a) 0 0 0

0 0 0

A rotation about the Z axis by an angle go is given by

Cos 0 -Sin 0 0

Rot(Z, 0) Sin 0 CosO 0

0 0 0

95

A translation along the Z axis for a distance 'd' is given by

0 0 0

Trans(Z, d) 0 0 0

o 0 d

Therefore, in equation (4.5), if we substitute the appropriate form

of the rotations and translations, viz. a rotation about the Xi axis by

ai1 1 degrees and a translation along the Xi axis by ai 1 (i.e. a

Screw{Xi, ai_l, ai_l}), and a rotation about Zi by 8i degrees and a

translation along the Zi axis by a distance di (i.e. a Screw{Zj, 6i,

di}), and multiply out equation (4.5), we get equation (4.6), as follows

1 0 0 ai- 1 cOi - sOi 0 0

ilT 0 cai-I -sai-1 0 sOi c0 i 0 0

i
0 sa i1 cai1 0 0 0 1 d

0 0 0 1 0 0 0 1

i.e.

co i -s0 i 0 ai- I
soi cai- 1 c i cai- 1 -sai- i di

i.1 T = s~C 1 O ~i -G 1 -a 1 d

s sai-l c~i si i-I cai-i cai-l di

0 0 0 1

96

APPENDIX 3

DIRECT KINEMATICS SIMULATION FOR THE MERLIN 6500 - LEFT ALI

ccc
C MERLIN ROBOT LEFT ARE KINEMATICS SIMULATION PROGRAM
cccccccccccccccccccccccccccccccccccccCCCccCcccccccccc cccccccccc
C MAIN PROGRAM
C DEFINE REAL & INTEGER VARIABLES

INTEGER INTRO
REAL T(4,4),W,S,E,WR,WP,HR

C DESCRIBE THE PROGRAM
PRINT *,' THIS PROGRAM PERFORMS A MATHEMATICAL SIMULATION OF'
PRINT *,' THE KINEMATICS OF THE MERLIN 6500 LEFT ARM ROBOT.'

10 PRINT '
PRINT *,' DO YOU NEED AN INTRODUCTION TO THE PROGRAM ?
PRINT *,' YES ---- > 1.'
PRINT *,' NO ---- > 2.'
INTRO = 2
READ(5,*) INTRO
IF(INTRO .EQ. 1) THEN
CALL INTROD
ELSE IF(INTRO .EQ. 2) THEN

GOTO 11
ELSE
PRINT *,' ENTRY ERROR'
GOTO 10
ENDIF

C FIND THE USER-DEFINED ANGLES
11 CALL ANGLES(W,S,E,WR,WP,HR)

PRINT *,' '
CALL DIRKIN(W,S,E,WR,WP,HR,T)
CALL TOUT(T)
STOP
END

CCC
C INTRODUCTION TO THE PROGRAMME

SUBROUTINE INTROD
PRINT *,' THE PROGkAi REQUESTS THE USER TO ENTER THE JOINT'
PRINT * ' ANGLES FOR EACH OF THE FOLLOWING JOINTS "--'
PRINT * ' JOINT RANGE
PRINT *
PRINT *,' WAIST JOINT RANGE + 147 TO - 147 DEGREES
PRINT SHOULDER JOINT RANGE + 56 TO - 236 DEGREES
PRINT * ' ELBOW JOINT RANGE + 56 TO - 236 DEGREES
PRINT * ' WRIST ROLL RANGE + 360 TO - 360 DEGREES
PRINT ,WRIST PITCH RANGE + 90 TO - 90 DEGREES
PRINT * ' OL ROLL RANGE + 360 TO - 360 DEGREES
PRINT *,'
PRINT * THE PROGRAM RETURNS THE FINAL TRANSFORMATION'
PRINT *,' MATRIX i.e. THE POSITION & ORIENTATION MATRIX'
PRINT * ' DEFINED AT THE WRIST PIN OR TIP OF THE ARM.'
PRINT *,'

97

RLLURN
ND

CCK'CCC
C ENTRY OF JOINT ANGLES BY THE USER

SUBROUTINE ANGLES(W,S,E,WR,YP,HR)
REAL WI,S1,EI,VR1,WP1,HRI,W,S,E,VR,VP,HR,PI

C DEFINE PI
PI = 3.141592654

C WAIST
101 W = 0.0

W1 = 0.0
PRINT *.' ENTER WAIST ANGLE (+/- 147 DEGREES) ==
READ(5,) W
IFI(ABS(WI) .GT. 147.0) THEN
PRINT *9)ERROR -- RANGE IS +/- 147 DEGREES.

GOTO 101
ENDIF
W = WI * PI / 180.0

C SHOULDER
102 S = 0.0

Sl = 0.0
PRINT *,' ENTER SHOULDER ANGLE (56 TO -236 DEGREES) ::>
READ(5,*) S1
IF ((S1 .GT. 56.0) .OR. (S1 .LT. -236.0)) THEN

PRINT *,' ERROR-- RANGE IS 56 TO -236 DEGREES.
GOTO 102

ENDIF
S = S1 * PI / 180.0

C ELBOW
103 E = 0.0

El = 0.0
PRINT *.' ENTER ELBOW ANGLE (56 to -236 DEGREES) ==>
READ(5,) El
IF ((El .GT. 56.0) .OR. (El .LT. -236.0))THEN

PRINT *,' ERROR-- RANGE IS 56 TO -236 DEGREES.
GOTO 103

ENDIF
E = El * PI / 180.0

C WRIST ROLL
104 WR 0.0

WRI = 0.0
PRINT * ' ENTER WRIST ROLL (+/- 360 DEGREES) ==>
READ(5,) WR1
IF (ABS(VRi) .GT. 360.0) THEN

PRINT *,' ERROR -- RANGE IS +/- 360 DEGREES.
GOTO 104

ENDIF
WR = WRI * PI / 180.0

C WRIST PITCH
105 VP =0.0

WPI = 0.0
PRINT *,' ENTER WRIST PITCH (+1- 90 DEGREES) =>
READ(5,*) WP1
IF (ABS(WPI) .GT. 90.0) THEN

98

PRINT *,' ERROR -- RANGE IS +/- 90 DEGREES.
GOTO 105

ENDIF
VP = WP1 * PI / 180.0

C HAND ROLL
106 HR = 0.0

HRI = 0.0
PRINT * ' ENTER HAND ROLL (+/- 360 DEGREES) =:>

READ(5,) HR1
IF(ABS(HR1) .GT. 360.0) THEN
PRINT *, ERROR - RANGE IS +/- 360 DEGREES.
GOTO 106

ENDIF
HR = HR1 * PI / 180.0
RETURii
END

CCC
C KINEMATICS IMPLEMENTATION

SUBROUTINE DIRKIN(W,S,E,WR,WP,HR,T)
INTEGER I,J,TIP
REAL T(4,4),Cl,C2,C3,C4,C5,C6,S1,S2,S3,S4,S5,S6,C23,5S23,D2,D3,
$R11A,R11B,R12A,R12B,RI3A,R13B,Il4A,R14B,V,S,E,WRWPHR,D6

C INITIALIZE MATRIX
DO 3011 = 1,4

DO 301 J = 1,4T(I,J) 0.0

301 CONTINUE
T(4,4) = 1.0

C DEFINE COSINES AND SINES
Cl =COS W)
C2 z COS)
C3 = COS F)
C4 = CO WR)
C5 7 COS VP)
C6 - COS HR)
Si = SIN W)
S2 = SIN 5)
S3 = SIN E)
S4 SIN WR)
S5 2 SIN WF)
S6 SIN HR)
C23 2 COC(S E)
S23 2 SIN (S E)

C DEFINE D2, D3 & D6(APPROXIMATELY) FOR THE LEFT ARM.
C D2 IS THE SIGNED DISTANCE FROM THE GLOBAL X AXIS TO THE SHOULDER
C CENTRAL AXIS (ALIGNED ALONG THE UPPER ARM). D3 IS THE SIGNED
C DISTANCE FROM THE SHOULDER CENTRAL AXIS TO THE ELBOW CENTRAL
C AXIS, ALIGNED WITH THE CENTER OF THE LOWER ARE. THESE VALUES
C (D2 & D3) CHANGE SIGN FOR THE RIGET ARM. D6 IS THE SIGNED
C DISTANCE FROM THE WRIST PIN TO THE TIP OF THE ROBOT ARK.
C (REFER TO ARM KINEMATICS FOR MORE DETAILS.)

D2 2 19.00
D3 -7.00
D6 3.5

99

C DEFINE TR.ANSFORN1 EATRIX ENTRIES
ll = (C23 * ((C4 * C5 * C6)-(S4 *S6))- (S23 * S5 * C6))
R11B = ((S4* C5 *C6) + (C4*6
T(1:1)= (Cl R111l) + (Si *R7B)
T(2,1)= (Si 111) -(Ci R1B)
T(3 1 = S23 * ((C4* C5*C6)-(14 S6))-(C23*S5*C6)
1121 = - C23 *((C4 *C5 *S6 +(94 *C)+(23 *S5 *S6)

R12B = ((S4 * C5 * S6)-.(C4 * 6)
T :2 (Cl * 12k)-(Si * R12B)

T(22 (Si Ri2k)+(C1 * R12B)
T(3,21 =523* ((C4 * C5 * S6)+(S4 *C6))+(C23 *S5 *S6)

11 = (C23 * 4* S5)+(S23 * C5)
R13B = (S4 * S5)
T1:3) (-Cl * 11)- (51 * 113B)
T2,3) (-Si * 113A)+C1 * R13B)
T(313 (S23 * C4 * 55)- (C23 * C)
R141 = (-17.24 * S23)+(17.38 *C'

R14B = (D2 + D3)
T 1 41 = (C* 14k)-(Sl * R4B)
T (2,4) = (Si * R14A)+(Cl * Rl4B)
T(3,4) =1(-17.24 * C23)- (17.38 *S2)C DECIDE ON DT A TO BE REPORTED TO TIP OR WRIST PIN
TIP = 0
PRINT ,'DO YOU WANT POSITION TO BE REPORTED TO TIP
PRINT *'OF ROBOT UKI (1) OR WRIST PIN (0) ?
READ (5,' TIP

C IF POSITION DATA IS TO BE REPORTED V.R.T. TIP OF ROBOT AUK
C ADD D6 * APPROACH VECTOR TO POSITION VECTOR I.E.
C T(ROV,4) = T (ROW,4) + (T(ROW,3) *D6)

IF(TIP.EQ. 1) THEN
T1,4~ = T1141 + (T(1:3~ D6~
T 2,4 =T 294 + ~T 2,3 *D6
T 3,4 = T,5 +T33 *D6

END IF
RETURN
END

CC
C OUTPUT TO SCREEN

SUBROUTINE TOUT(T)
REAL T(4,4)
INTEGER I,J

C OPEN DATA FILE
OPEN (UNIT=6 ,STATUS= 'NEW' ,FILE= 'LDKIN. OUT')
PRINT *,'
DO 601 I = 1,4

C WRITE TO SCREEN
WRITE (5,*) (T(I,3) J=1 ,4

C WRITE TO OUTPUT FILE LDKIN .OT
WRITE6,*) (T(I,J),J=l,4)

601 OTN
t'RINT ,

RETURN
END

CCC

100

DIRECT KINEMATICS SIMULATION FOR KERLIN 6500 RIGHT AI

CCC
C IERLIN ROBOT RIGHT ARl KINEMATICS SIMULATION PROGRAI
CCC
C AIN PROGRAM
C DEFINE REAL & INTEGER VARIABLES

INTEGER INTRO
REAL T(4,4),,S,E,VIVPHR

C DESCRIBE THE PROGRAM
PRINT *,' THIS PROGRAM PERFORIS MATHEMATICAL SIMULATION OF'
PRINT *,' THE KINEMATICS OF THE KERLIN 6500 RIGHT AIR ROBOT.'

10 PRINT *,' '
PRINT *,' DO YOU NEED AN INTRODUCTION TO THE PROGRAM ?
PRINT *,' YES ---- > 1.'
PRINT *,' NO ---- > 2.'
INTRO = 2
READ(5,*) INTRO
IF(INTRO .EQ. 1) THEN

CALL INTROD
ELSE IF(INTRO .Eq. 2) THEN

GOTO 11
ELSE
PRINT *,' ENTRY ERROR
GOTO 10

ENDIF
C FIND THE USER-DEFINED ANGLES
11 CALL ANGLES(W,S,E,VR,VP,HR)

PRINT *,'
CALL DIRKIN(WSE,WR,VP,IR,T)
CALL TOUT(T)
STOP
END

CCC
C INTRODUCTION TO THE PROGRAIE

SUBROUTINE INTROD
PRINT *,' THE PROGRAM REQUESTS THE USER TO ENTER THE JOINT '
PRINT *,' ANGLES FOR EACH OF THE FOLLOWING JOINTS
PRINT * ' JOINT RANGE
PRINT *9'
PRINT *,' WAIST JOINT RANGE + 147 TO - 147 DEGREES 9
PRINT *,' SHOULDER JOINT RANGE + 56 TO - 236 DEGREES
PRINT *,' ELBOW JOINT RANGE + 56 TO - 236 DEGREES '
PRINT *,' WRIST ROLL RANGE + 360 TO - 360 DEGREES 9
PRINT *,' WRIST PITCH RANGE + 90 TO - 90 DEGREES
PRINT *,' TOOL ROLL RANGE + 360 TO - 360 DEGREES
PRINT *,'
PRINT *,' THE PROGRAM RETURNS THE FINAL TRANSFORIATION
PRINT M' IATRIX i.e. THE POSITION & ORIENTATION MATRIX '
PRINT *,' DEFINED AT THE WRIST PIN OR TIP OF THE ARN.
PRINT '
RETURN
END

101

CCCCccCCccCCcCCCCCCCcccCcCCCcCCCccCCCcCCCCccccCCcCCCCCCCCccccccCCcCC
C ENTRY OF JOINT ANGLES BY THE USER

SUBROUTINE ANGLES(W,S,E,WR,VP,HR)
REAL W1,S1,EI,WRI,VP1,HRI,V,S,E,VR,WP,IR,PI

C DEFINE PI
PI = 3.141592654

C WAIST
101 V = 0.0

VI = 0.0
PRINT * ' ENTER WAIST ANGLE (+/- 147 DEGREES) ==> '
READ(5,*) VI
IF (ABS(VI) .GT. 147.0) THEN
PRINT *,' ERROR -- RANGE IS +/- 147 DEGREES.
GOTO 101

ENDIF
V = V1 * PI / 180.0

C SHOULDER
102 S = 0.0

Si = 0.0
PRINT * ' ENTER SHOULDER ANGLE (56 TO -236 DEGREES) ==>
READ(5 ,) $1
IF ((S1 .GT. 56.0) .OR. (S1.LT. -236.0)) THEN

PR INT *,' ERROR -- RANGE IS 56 TO -236 DEGREES.
GOTO 102

ENDIF
S = Si * PI / 180.0

C ELBOW
103 E = 0.0

El = 0.0
PRINT *' ENTER ELBOW ANGLE (56 to -236 DEGREES) =:>
READ(59,) El
IF ((El .GT. 56.0) .OR. (El .LT. -236.0))THEN
PRINT *,' ERROR -- RANGE IS 56 TO -236 DEGREES.
GOTO 103

ENDIF
E = El * PI / 180.0

C WRIST ROLL
104 WR = 0.0

WR1 = 0.0
PRINT *,' ENTER WRIST ROLL (+/-360 DEGREES) ==>
READ(5,*) WRi
IF (ABS(VR1) .GT. 360.0) THEN
PRINT *,' ERROR -- RANGE IS +/- 360 DEGREES.
GOTO 104

ENDIF
WR = VRI * PI / 180.0

C WRIST PITCH
105 WP = 0.0

WP1 = 0.0
PRINT * ' ENTER WRIST PITCH (+1- 90 DEGREES) ==> '
READ(5,) VPI
IF (ABS(WPI) .GT. 90.0) THEN
PRINT *,' ERROR -- RANGE IS +/- 90 DEGREES.
GOTO 105

102

ENDIF
VP = WP1 * PI / 180.0

C HAND ROLL
106 1 = 0.0

1l = 0.0
PRINT * ' ENTER HAND ROLL (+/- 360 DEGREES) ==> '
RIAD(5,*) ll
IF(ABS~il) .GT. 360.0) THEN
PIN , ERROR -- lNGE IS +/- 360 DEGREES. '
GOTO 106

ENDIF
HR = IRI * PI / 180.0
RETURN
END

CCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C KINEMATICS IMPLEMENTATION

SUBROUTINE DIRKIN(V,SE,WRVPHR,T)
INTEGER I,J,TIP
REAL T(4,4) ,CIC2,C3,C4,C5,C6,S1S2,S3,4,S5,S6,C23,S23,D2,D3,$RliARIIBR12k Rl2B R13i,R13B,R14A R14B,VS,EWRNP HRD6

C INITIALIZE MATRIX
DO 301 1 = 1,4

DO 301 J = 1,4T IJ) = 0.0

301 CONTINUE
T(4,4) = 1.0

C DEFINE COSINES AND SINES
Cl = COS V)
C2 = COS S)
C3 = COS E
C4 = COS V)
C5 = COS VP)
C6 = COS HR)
S = SIN V)
S2 = SINS)
S3 = SIN E)
S4 = SIN Wk)
S5 = SIN VP)
S6 = SIN HR)
C23 = CO (S + E)
S23 = SIN(S + E)

C DEFINE D2, D3 & D6(APPROXIMATELY) FOR THE RIGHT ARM.
C D2 IS THE SIGNED DISTANCE FROM THE GLOBAL X AXIS TO THE SHOULDER
C CENTRAL AXIS (ALIGNED ALONG THE UPPER ARM). D3 IS THE SIGNED
C DISTANCE FROM THE SHOULDER CENTRAL AXIS TO THE ELBOW CENTRAL
C AXIS, ALIGNED WITH THE CENTER OF THE LOVER ARM. THESE VALUES
C (D2 & D3) CHANGE SIGN FOR THE LEFT ARM. D6 IS THE SIGNED
C DISTANCE FROM THE VRIST PIN TO THE TIP OF THE ROBOT ARM.
C (REFER TO THE ARM KINEMATICS FOR MORE DETAILS.)

D2 = - 19.00
D3 = 7.00
D6 = 3.5

C DEFINE TRANSFORM MATRIX ENTRIES
1I1A = (C23 * ((C4 * C5 * C6)-($4 * S6))-(S23 * S5 * C6))

103

hiD = ((S4 *C5 * C6) + (C4 *S)

T(11) (Ci *lilA + (Si * ilE
T(2,i) = (Si *11k (C1 R11in
T(3,l) = -S23 * ((4 C 5 C6)-((4 S6)..(C23 *S5 *S06)
R12A=- C23*((C 4*C5*S6)+(S4* C6) +(23 S5*S6)
R12B =((S4 *C5 * S6)..(04 * C6)
T(1:2) (Cl * R12AY- (Si * Ri2B)
T(22 = (S1 * Ri2A)+CI * R12B)
T(322) S 23 * ((C4 * C5 * S6)+(S4 *C6))+(C23 *S5 S 6)
R13A = (C23 *C4 * S5)+(S23 * C5)
R13B = (S4 * S5)
T(1:3) -C1 11A)- (51 *R13B)
T(2,3) -51 * 13A)+(Cl *Rl3B)
T(3,3) S23 C 4 * S5)- (023 *C5)
1141 = (-17.24 S 23)+(17.38 * 2)
R14B = (D2 + D3)
T114) = (01* R141)-(S1 *Kl4B)
T (2,4) = (Si * R14A)+(C1 * R14B)
T(3,4) = (-17.24 * 023)- (17.38 *S2)

C DECIDE ON DATlA TO BE REPORKTED TO TIP 01 WRIST PIN
TIP = 0
PRINT ,'DO YOU VANT POSITION TO BE REPORTED TO TIP'
PRINT *'OF ROBOT AUK (1) OR WRIST PIN (0) ?9
lEAD 5;~ TIP

C IF POSITION)DATA IS TO BE REPORTED V.1.T. TIP OF ROBOT All
C ADD D6 * APPROACH VECTOR TO POSITION VECTOR I.E.
C T(KOW,4) = T (ROW,4) (T(ROW,3) *D6)

IFT PE. 1) THEN
(1,4)j T 1,4 + T ,13 *D6)

T(2,4) T T294 + ~T 2 ,3) D6)
T(3,4) T6,4) + (T(3,31 Hi6

END IF
RETURN
END

CC
C OUTPUT TO SCREEN

SUBKOUTINETOUT(T)
REA T(4,4)
INTEGER I,J

C OPEN DATA FILE
OPEN(UNIT=6 ,STATUS= 'NEW' ,FILE= 'LDKIN. OUT')

DO 601 1 = 124
C WRITE TO SCKEEN

WRITE (5,*) (T(I,J) J=124)
C WRITE TO OUTPUT ILE LDIN.OUT

60 VRIT%6,*) (T(I,J),J=i,4)

PRINT *,

KETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCeCCC

104

APPENDIX

KERLIN 6500 MANIPULATOR INVERSE KINEMATICS SIMULAION - FORTRAN CODE

- LEFT AR

CCC
C KILIN LEFT SHOULDERED ROBOT INVERSE KINEMATICS PROGRAM
C PROGRAIHED BY :-- RANVIR S. SOLANKI
C WRIGHT STATE UNIVERSITY
C DAYTON, OR - 45435
CCC
C MAIN PROGRAM
C DEFINE REAL A INTEGER VALUES

INTEGER FLAG,RESTART,WSPACE
REAL T(4,4),Z(4,7) ,T1,T2P1,T2P2,T3P,T3N,T4A,T4B,T5A,T5B,
ST6A,T6B,A2,D2,D3,D4,D6,PI,VP,WN,S1,S2,EP,EN,VRI,VR2,
iVR3,WR4,VPI,VP2,VP3,WP4,HR1,HR2,HR3,HR4,DUM,TPP,TPN
PRINT K' MERLIN 6500 LEFT SHOULDER AR '
PRINT *,' INVERSE KINEMATICS SIMULATION '

1 PRINT * ' '

C DEFINE VALUE OF CONSTANTS
PI = 3.141592653589792

C SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 50 LB. ROBOT
C A2 IS THE DISTANCE BETWEEN SHOULDER JOINT AND ELBOW JOINT

A2 = 17.38
C D4 IS THE DISTANCE FROM ELBOW JOINT TO WRIST PIN

D4 = 17.24
C D6 IS THE DISTANCE FROM WRIST PIN TO TIP OF THE END-EFFECTOR

D6 = 3.5
C SET UP D2 AND D3. D2 IS THE DISTANCE FROM THE WAIST VERTICAL
C AXIS TO THE CENTER OF THE UPPER ARM. D3 IS THE DISTANCE FROM
C THE CENTER OF THE UPPER AR TO THE CENTER OF THE LOVER AR.
C FOR LEFT HAND, D2 AND D3 ARE

D2 = 19.00
D3 = -7.00

C INITIALIZE ALL GLOBAL VARIABLES (RETURNED VARIABLES ARE
C INITIALIZED INSIDE THE SUBROUTINE ONLY)

WP = 0.0
SI = 0.0
S2 = 0.0
EP = 0.0
EN = 0.0
VRI = 0.0
WR2 = 0.0
VR3 = 0.0
WR4 = 0.0
WPI = 0.0
WP2 = 0.0
WP3 = 0.0
WP4 = 0.0
HR1 = 0.0
HR2 = 0.0
HR3 = 0.0

105

HR4 = 0.0
DUN = 0.0
T2PI = 0.0
T2N1 = 0.0
T2P2 = 0.0
T2N2 = 0.0

C INITIALIZE [Z MATRIX
C THE FIRST COLUMN OF THE MATRIX IS A FLAG FOR VALIDITY OF THE
C SET OF JOINT ANGLES BEING ALL WITHIN THEIR RANGES. THE REMAINING
C 4 X 6 MATRIX IS USED TO STORE THE RESULTS OF THE COMPUTATIONS
C IN THE ORDER WAIST, SHOULDER, ELBOW, WRIST ROLL, WRIST PITCH,
C AND HAND ROLL.

DO 2 I = 1,4
DO 2 J = 1,7z(Ij) = 0.0

2 CONTINUE
C ENTER POSITION AND ORIENTATION MATRIX FROM DATAFILE OR SCREEN
3 CALL MATENTER(T,D6)
C FLAG SET UP FOR END POSITION IN/OUT OF WORKSPACE.
C WSPACE = 0 IF THE END-EFFECTOR IS INSIDE THE WORKSPACE
C WSPACE = 1 IF THE END-EFFECTOR IS OUTSIDE THE VORKSPACE
C SET DEFAULT WSPACE FLAG = 0

WSPACE = 0
C COMPUTE WAIST ANGLES TI
C IN THE CALL STATEMENT BELOW, T IS THE 4X4 POSITION AND
C ORIENTATION WORKSPACE, Ti IS THE COMPUTED WAIST ANGLE.

CALL WAIST(T,T1,D2,D3,VSPACE)
C IF POSITION DESIRED AS END-POINT IS OUTSIDE THE WORKSPACE,
C GET A NEW SET OF ENDPOINTS FROM THE USER.

IF(VSPACE .EQ. 1) THEN
GOTO 3

ENDIF
C CONVERT WAIST ANGLE FROM RADIANS TO DEGREES
C A DUMMY VARIABLE (DUN) IS USED HERE SINCE WE ARE DEALING
C WITH ONE WAIST ANGLE ONLY.

CALL RADEG(Tl,O.O,VP,DUM)
C STORE RESULTS OF WAIST IN [Z] MATRIX (SECOND COLUMN)

DO 5 I = 1,4Z(I,2) = VP

5 CONTINU W
C RESET THE WSPACE FLAG TO 0 FOR ELBOW ANGLE COMPUTATIONS.

VSPACE = 0
C COMPUTE ELBOW ANGLES T3P,T3N.

CALL ELBOV(T,T3P,T3N,A2,D2,D3,D4,VSPACE)
C IF USER DEFINED END-POSITION IS OUTSIDE THE WORKSPACE,
C RE-ENTRY OF MATRIX BY THE USER.

IF(VSPACE .EQ. 1) THEN
GOTO 3

ENDIF
C CONVERT ELBOW ANGLES FROM RADIANS TO DEGREES

CALL RADEG(T3P,T3N,EP,EN)
C STORE RESULTS OF ELBOW ANGLE SOLUTION IN THE FOURTH COLUMN
C OF MATRIX [Z]

DO 6 I = 1,2

106

Z (1,4) = EP
Z(+2,4) = EN

6 CONT INUE
C COIPUTE (SHOULDER + ELBOW) ANGLES TPP,TPN

CALL SHOULDER(T,A2,D4,T1,T3P,T3N,TPP,TPN)
C COMPUTE SHOULDER ANGLES T2P1,T2P2

T2P1 = TPP - T3P
T2P2 = TPN - T3N

C CONVERT SHOULDER ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T2P1,T2P2,S1,S2)

C STORE RESULTS OF SHOULDER ANGLES IN [Zj MATRIX (THIRD COLUMN)
DO 7 I = 1,2

z(1,3) = 51s
Z(1+2,3) = S2

7 CONTINbE
C COMPUTE WRIST ROLL ANGLES

FLAG = 0
CALL WROLL(T,T4PI,T4P2,TI,TPP,TPN)

C CONVERT WRIST ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T4P1,T4P2,WR1,WR2)

C COMPUTE 'WRIST FLIPPED' SOLUTIONS
WR3 = VRI + 180.0
VR4 = VR2 + 180.0

C STORE RESULTS OF WRIST ROLL IN [Z] MATRIX (FIFTH COLUMN)

1 (1,5)= WRIZ 2,5 = WR3
Z 3,5 = WR2
Z14,5 =WR4

C COMPUTE WRIST PITCH ANGLES
CALL WPITCH(T,T5P1,T5P2,T1,TPP,TPN,T4P1,T4P2)

C CONVERT WRIST PITCH ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T5P1,T5P2,WP1,WP2)

C COMPUTE 'REVERSED PITCH' SOLUTIONS
VP3 = - WP1
WP4 = - WP2

C STORE RESULTS IN [Z] MATRIX - SIXTH COLUMNZ (1,6) W P1

Z(2,6) := WP3
Z(3,6) = WP2
Z(4,6) = WP4

C COMPUTE HAND ROLL
CALL HROLL(T,T6PI,T6P2,T,TPP,TPN,T4P1,T4P2,T5PI,TSP2)

C CONVERT HAND ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T6PI,T6P2,HRI,HR2)

C COMPUTE 'HAND FLIPPED' SOLUTIONS FOR HAND ROLL
HR3 = HR1 + 180.0
HR4 = HR2 + 180.0

C STORE RESULTS IN THE [Z] MATRIX (SEVENTH COLUMN)
Z 2,7 = HR3
Z 3,7 = HR2

Z14,71 = HR4
C NORMALIZE THE COMPUTED RESULTS

CALL NORMAL(Z)

107

C CHECK FOR VALIDITY OF EACH SOLUTION SET
CALL VALID(Z)

C PRINT OUT VALID RESULTS (VALID IF WITHIN JOINT ANGLE RANGE)
PRINT *,' THE VALID INVERSE KINEMATICS RESULTS ARE
DO 51 1 = 1,4

IF(Z(I,1) EQ. 0.0) THEN
VRITE(5,:) 'THE VALID SOLUTION NUMBER IS ',I
VRITE(5,*) (Z(I,J),J=2,7)

ENDIF
51 CONTINUE
C QUERY FOR RESTART

RESTART = 0
PRINT *,' TO RESTART PROGRAM, ENTER 1
PRINT *,' TO EXIT THE PROGRAM, ENTER 0
READ(5,98) RESTART
IFRESTART .EQ. 1) THEN

GOTO 1

ENDIF
98 FORMAT(I)

STOP
END

CC
C POSITION AND ORIENTATION DATA ENTRY ROUTINE

SUBROUTINE MATENTER(A,D6)
INTEGER NATCH,TIP,DFILE
REAL A(4,4),PX1,PYI,PZ1,PX,PY,PZ,D6

C INITIALIZE LOCAL VARIABLES
PXI = 0.0
PYl = 0.0
PZ1 = 0.0
PX = 0.0
PY = 0.0
PZ = 0.0

C INITIALIZE MATRIX [A]
100 DO 101 1 = 1,4

DO 101 J = 1,4
A(I,J) = 0.0

101 CONTINUE
C SET DEFAULT TO READ FROM DIRECT KINEMATICS DATA FILE

DFILE = 1
C READ FROM DATA FILE ?

PRINT *,' READ TRANSFORM MATRIX FROM LDKIN.OUT ?
PRINT *' ENTER 1 IF YES, 2 IF NO
READ(5,) DFILE
IF(DFILE .EQ. 1) THEN
OPEN(UNIT=6,FILE 'LDKIN.OUT',STATUS='OLD')
DO 105 I = 1,4

READ(6,*) (A(I,J),J=1,4)
105 CONTINUE

CLOSE(UNIT=6)
ELSE

C DATA ENTRY OF POSITION AND ORIENTATION MATRIX
DO 102 I = 1,3

DO 102 J = 1,4

108

PRINT *' ENTER TRANSFORM MATRIX ENTRY',I,JREAD(,) A(I,J)

102 CONTINUE
C ADJUST ROW 4 ENTRIES TO PREVENT ENTRY ERROR

A(4,1) = 0.0
A (4,2) = 0.0
A (4,3) = 0.0
A(4,4) = 1.0

ENDIF
C PRINT OUT MATRIX TO SCREEN

PRINT * ''
PRINT *, THIS IS THE ENTERED TRANSFORM MATRIX.
CALL AOUT(A)
PRINT * IF YOU WANT TO CHANGE THE MATRIX, ENTER 0
PRINT * IF POSITION ENTRIES REFER TO THE TIP OF THE '
PRINT * END EFFECTOR ----- ENTER 1 '
PRINT * ' IF POSITION ENTRIES ARE WITH RESPECT TO THE '
PRINT * ' WRIST PIN ---------- ENTER 2
READ(5,104) TIP

C ALLOW FOR CHANGE OF TRANSFORM MATRIX ENTRIES
IF(TIP .EQ. 0) THEN

GOTO 100

ENDIF
C ADJUST END EFFECTOR POSITION TO WRIST PIN IF POSITION GIVEN IS
C AT THE TIP OF THE END-EFFECTOR

IF(TIP .EQ. 1) THEN
C SETUP POSITION PARAMETERS TO END-EFFECTOR TIP

PX1 A (1,4)
PY1 A (2,4)
PZ1 = A(3,4)

C ADJUST POSIT ION PARAMETERS TO WRIST PIN
PX = PX1 - D6 * A (1,3)
PY = PY1 - D6 * A (2,3)
PZ = PZ1 - D6 * A (3,3)

C RESET POSITION PARAMETERS IN [A] MATRIX TO WRIST PIN
A(1,4 = PX
A12,4= PY
A (3,4) PZ

ENDI F
104 FORMAT(I)

RETURN
END

CCC
C OUTPUT OF MATRIX TO SCREEN

SUBROUTINE AOUT(M)
REAL 1(4,4)
INTEGER I,J
DO 1001 1 = 1,4

WRITE(5,*) (I(I,J),J=1,4)
1001 CONTINUE

RETURN
END

CCC

109

C WAIST ANGLE COMPUTATION
SUBROUTINE VAIST(A,WI,X2,X3,SPACE)
REAL A(4,4),Vl,X2,X3,RHO,PI,PY,TEMJ1,TERM2,

ST2,X23
INTEGER I,J,SPACE

C INITIALIZATION OF LOCAL VARIABLES
V1 = 0.0
TER1 = 0.0
TERM2 = 0.0
X23 = 0.0
T2 = 0.0

C SET UP OF POSITION PARAMETERS
PX = A(1,4)
PY = A 2,4)

C COMPUTE F IRST TERM FOR WAIST ANGLE SOLUTION
TERMI = ATAN2(PY,PX)

C COMPUTE TERM2
X23 = (X2 + X3)
PXSQ = PX * PX
PYSQ = PY* PY
PXPYSQ = PXSQ + PYSQ
X23SQ = X23 * X23

C USER-SPECIFIED POSITION INSIDE VORKSPACE ???
C SET FLAG TO INSIDE WORKSPACE

SPACE = 0
IF(PXPYSQ .GT. X23SQ) THEN

C SPECIFIED POSITION IS INSIDE WORK-SPACE, SO COMPUTE SECOND TERM
GOTO 301

ELSE
C USER SPECIFIED POSITION IS OUTSIDE WORKSPACE.
C COMPUTE DIFFERENCE IN TERMS

ERROR = (ABS(PXPYSQ - X23SQ
C IF THE COMPUTED ERROR < 0.0001, EN COMPUTATIONAL ERROR
C COULD HAVE CAUSED THE POSITION TO LIE OUTSIDE THE VORKSPACE.

IF(ERROR .LT. 0.0001) THEN
C YES, COMPUTATIONAL ERROR OCCURED. COMPUTE T2, FOLLOWED BY
C THE SECOND TERM.

T2 = SQRT(ERROR)
GOTO 302

ELSE
C USER SPECIFIED POSITION IS DEIFINITELY OUT OF VORKSPACE

SPACE = 1
PRINT *,' OUTSIDE WORKSPACE
GOTO 303

ENDIF
ENDIF

301 T2 = SQRT(PXPYSQ - X23SQ)
302 TERM2 = ATAN2(X23,T2)
C COMPUTE SOLUTION FOR WAIST ANGLE VI

Vi = TERMi - TERM2
303 RETURN

END
CCCcc

110

C ELBOW ANGLE DETERMINATION ROUTINE
SUBROUTINE ELBOV(A,EPEN,B2,12,13,14,SPACE)
INTEGER SPACE
REAL A(4,4),EP,EN,B2,X2,13,X4,KA,KB,123,T1,T2P,T2N

C INITIALIZE LOCAL VARIABLES
EP = 0.0
EN = 0.0
KA = 0.0
KB = 0.0
T1 = 0.0
T2P = 0.0
T2N = 0.0
123 = 0.0

C SET UP POSITION PARAMETERS OF TRANSFORM MATRIX
PX = A(1,4)PY =A(2,4)

PZ A(3,4)
C COMPUTE FIRST TERI OF AIRCTAN FUNCTION

X23 = (X2 + X3)
KA:- (PX * P) (PY *PY) - (PZ*PZ
KB = (B2 * B2 + (123 *X23) + X4 * 14
TI: (KA + KB) / 2.0 *B2* 14)
T1SQ = Ti * T1

C DETERMINE IF USER DEFINED POSITION IS OUTSIDE WORKSPACE
SPACE = 0

C POSITION IS INSIDE THE YOU-SPACE IF TISq < 1.0
IF(T1SQ .LE. 1.0) THEN

GnTO 401
ELSE

C USER DEFINED POSITION MAYBE OUTSIDE WORKSPACE
C THEREFORE, COMPUTE THE ERROR

ERROR = (ABS(1.0 - TiSq))
C CHECK TO SEE IF COMPUTATIONAL ERROR COULD HAVE CAUSED THE
C POSITION TO LIE OUTSIDE THE WORKSPACE

IF(ERROR .LT. O.0001) THEN
T2P = SQRT(ERROR)
GOTO 402

ELSE
C USER ENTERED POSITION IS OUTSIDE WORKSPACE

PRINT *,' OUTSIDE VORKSPACE
SPACE = I
GOTO 403

ENDIF
ENDIF

C COMPUTE SECOND TERM OF ARCTAN FUNCTION
401 T2P = SQRT(1.0 - TiSq)
402 T2N = - T2P
C COMPUTE THE TWO POSSIBLE SOLUTIONS FOR ELBOW ANGLE I.E. EP & EN

EP = ATAN2(TI,T2P)
EN = ATAN2(T1,T2N)

403 RETURN
END

CCC

111

C SHOULDER + ELBOW ANGLE DETERMINATION ROUTINE
SUBROUTINE SHOULDER(A,B2,X4,WP,EP,EN,APP,APN)
INTEGER I,JREAL A(4,4),B2,X4,VP,EP,EN,TIPP,TlPN,T2PP,T2PN,CIP,SIP
$C3P,C3NS3P,S3N,TIPPA,TlPNAT2PPB$T2PNB,APP$APN

C INITIALIZE LOCAL VARIABLES
T1PP = 0.0
TIPN = 0.0
T2PP = 0.0
T2PN = 0.0
TIPPA = 0.0
TIPNA = 0.0
TIPP = 0.0
TIPN = 0.0
T2PPB = 0.0
T2PNB = 0.0
APP = 0.0
APN = 0.0

C SETUP OF POSITION PARAMETERS
PX A (1,4)
PY A(2,4)
PZ A (3,4)

C COMPUTE COSINE AND SINE FUNCTION VALUES OF THE APPROPRIATE ANGLES
CIP = COS vP
SIP SIN VP
C3P = COS EP
S3P = SIN EP
C3N = COS EN
S3N = SINIEN)

C COMPUTE ALL POS IBLE FIRST TERNS OF ARCTAN2 FUNCTION
C WAIST POSITIVE ELBOW POSITIVE (TIPP)

TIPPA = B2 C3P * PZ
TIPP = (((B2 * S3P) - X4I * ((CIP * PX) + (SIP * PY))) - TIPPA

C WAIST POSITIVE, ELBOW NEGATIVE (TIPN)
T1PNA = B2 * C3N * PZ
T1PN (((B2 * S3N) - X4) *((CiP * PX) + (SIP * PY))) - T1PNA

C COMPUTE ALL POSSIBLE SECOND TERMS OF ARCTAN2 FUNCTION
C WAIST POSITIVE, ELBOW POSITIVE (T2PP)

T2PPB = ((B2 * C3P) * ((CIP * PX) + (SIP * PY)))
T2PP = (((B2 * S3P) - X4) * PZ) + T2PPB

C WAIST POSITIVE, ELBOW NEGATIVE (T2PN)
T2PNB = ((B2 * C3N) * ((CiP * PX) + (SIP * PY)))
T2PN = (((B2 * S3N) - X4) * PZ) + T2PNB

C COMPUTE ALL FOUR POSSIBLE SOLUTIONS OF (THETA 2 + THETA 3)
APP = ATAN2(T1PPT2PP)
APN = ATAN2 (TPNT2PN)
RETURN
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCrrCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C WRIST ROLL ANGLE DETERMINATION ROUTINE

SUBROUTINE WROLL(A,PPP,PPN,WP,T23PP,T23PN)
INTEGER FPPP,FPPN
REAL A(4,4),PPP,PPN,WP,T23PP,T23PN,T1P,R13,R23,R33,
SSIP,CiP,C23PP,C23PN,S23PP,S23PN,SNGCHK

112

C INITIALIZE LOCAL VARIABLES
T1P = 0.0
T2PPP = 0.0
T2PPN = 0.0
PPP = 0.0
PPN = 0.0

C SET UP SINGULARITY CHECK CONDITION
SNGCHK = 0.005

C SET FLAGS TO NON-SINGULAR CASE
FPPP 0
FPPN 0

C SETUP NATRIX ORIENTATION PARAMETERS
R13 = A 1,31
R23 A (2,3
R33 A 3,3)

C SETUP TRIG. FUNCTIONS
SIP SI N(WP)
CIP COS(VP)
C23PP : COS(T23PP)
S23PP SIN (T23PP)
C23PN COS (T23PN}
S23PN C SIN (T23PNI

C COMPUTE ALL FIRST TERMS OF ARCTAN2 FUNCTION
TIP = (R13 * SIP)J+ (R23 * C1P)

C COMPUTE ALL SECOND TERMS OF ARCTAN2 FUNCTION
T2PPP - (R13*C1P*C23PP) - (R23*SlP*C23PP) + (R33*S23PP)
T2PPN : (R13*ClP*C23PN) - (R23*SlP*C23PN) + (133*S23PN)

C CHECK FOR SINGULARITY CONDITIONS AT WRIST PITCH
IF((T1P .LT. SNGCHK .AND. TiP .GT. - SNGCHK) AND.

$(T2PPP LT. SNGCHK .AND. T2PPP .GT.- SNGCHK)) THEN
FPPP =

ENDIF
IF((T1P .LT. SN-CHK .AND. TIP .GT. - SNGCHK) .AND.
3(T2PPN .LT. SNGCHK .AND. T2PPN .GT. - SNGCHK)) THEN

FPPN 1
END1F

C SET RIST ROLL TO 0.0 RADIANS IF SINGULARITY DETECTED
C AT V'RIST PITCH, ELSE COMPUTE WRIST ROLL. NOTE THAT THIS WILL
C CAUSE THE ROLL 10 SHOV UP ONLY IN HAND ROLL ANGLE.
C SOLVTION I

IF(FPPP .EQ. 1) THEN

ELSE
PPP AT2(T1P,T2PPP)

END IF
C SOLUTION t 2

IF(FPPN .EQ. 1) THEN
PPN - 0.0

ELSE
PPN ATAN2(TlP,T2Pf'N

RE It a N
END

({T'CCCCC(ICC('CCCCCCCCC('({CC

113

C WRIST PITCH DETERMINATION
SUBROUTINE VPITCI(A,A5PI1A5P2,VP,APP,APN,V4P1,V4P2)
REAL A(4,4),A5P1,A5P2,VP,APP,APN,V4P1,W4P2,

$T5A1PPPP ,T5A2PPPP ,T5A3PPPP ,T5APPPP ,T5A1PPNP ,T5A2PPNP ,T5A3PPNP,
ST5APPNP ,T5B1PPPP ,T5B2PPPP ,T5B3PPPP ,T5BPPPP ,T5B1PPNP ,T5B2PPNP,
$T5B3PPNP,T5BPPNP,R13,R23,R33,ClP,SlPC23PP,S23PP,
SC23PN,S23PN,C4P1 ,S4P1 ,C4P2,S4P2

C INITIALIZE LOCAL VARIABLES TO 0.0
T5AIPPPP = 0.0
T5A2PPPP = 0.0
T5A3PPPP = 0.0
T5APPPP = 0.0
T5A1PPNP = 0.0
T5A2PPNP = 0.0
T513PPNP = 0.0
T5APPNP = 0.0
T5BlPPPP = 0.0
T5B2PPPP = 0.0
T5B3PPPP = 0.0
T5BPPPP = 0.0
T5B1PPNP = 0.0
T5B2PPNP = 0.0
T5B3PPNP = 0.0
T5BPPNP = 0.0
A5P1 0.0
A5P2 = 0.0

C SETUP ORIENTATION PARAMETERS
R13 = A(1,3)
R23= A(2,3)
R33 = A(3,3)

C SETUP TRIG. FUCTIONS
CiP = COS(VP)
sip = SIN(VP)
C23PP =CIS(APP
S23PP = SIN (Pp
C23PN = COS (PN
S23PN = SIN (APN
C4P1 = COS (V4P1
S4P1 = SI(4P
C4P2 = COS (V4P2
S4P2 = SIN (V4P21

C COMPUTE FIRST TERM OF THE ARCTAN2 FUNCTIONS
T5A1PPPP = - (113 * ((CIP * C23PP * C4P1) + (SIP * S4P1))
T5A2PPPP = - (R23 * ((SiP * C23PP * C4P1) - (CIP * S4P1))
T5A3PPPP = R33 * 23PP * C4P1
T5APPPP = T5A1PPPP + T5A2PPPP + T5A3PPPP
T5A1PPNP = - (113 *((C1P * C23PN * C4P2) + (SIP * S4P2))T5A2PPNP = - (R23 *((JS1P * C23PN * C4P2) - (CiP * S4P2))
T5A3PPNP = R33 * S23PN * C4P2
T5APPNP = T5A1PPNP + T5A2PPNP + T5A3PPNP

C COMPUTE SECOND TERNS OF THE ARCTAN2 FUNCTIONS
T5B1PPPP = - CP S 23PP R 13)
T5B2PPPP =- S1P S 23PP * 23)
T5B3PPPP = - (C23PP * 133)

114

T5BPPPP = T5B1PPPP + T5B2PPPP + T5B3PPPP
T5B1PPNP = - (CiP *S23PN * 13)T5B2PPNP = - (SIP *S23PN *123)

T5B3PPNP = - (C23PN * 133N
T5BPPNP = T5BlPPNP + T5B 2PN + T5B3PPNP

C COM1PUTE WRIST PITCHIANGLES USING ARCTAN2 FUNCTION
A5PI = ATAN2 (T5APPPP,T5BPPPP)
15P2 = ATAN2 (T5APPNP,T5BPPNP)
RETURN
END

CCC
C DETERNINATION OF HIND ROLL ANGLES

SUBROUTINE IROLL(A ,A6PI1 6P2,VP ,APP,APN,A4PI1 4P2 ,A5PI1 5P2)
INTEGER IJ
REAL A(4,4) ,A6P1 ,A6P2,VP,APPAPN,A4PI14P2,A5PI1A5P2,
SPPPPP~II,PP PPA2 ,PPPPPA3 ,PPPPPA ,PPNPPA1 ,PPNPPA2,PPNPPA3 ,PPNPPA
SPPPPPB 1,PPPPPB2 ,PPPPPB3 ,PPPPPB ,PPNPPB1, PPNPPB2 ,PPNPPB3 ,PPNPPB

C INITIALIZE LOCAL VARIABLES TO 0.0
PPPPPA1 = 0.0
PPPPPA2 = 0.0
PPPPPA3 = 0.0
PPPPPA = 0.0
PPNPPA1 = 0.0
PPNPPA2 = 0.0
PPNPPA3 = 0.0
PPNPPA = 0.0
PPPPPB1 = 0.0
PPPPPB2 = 0.0
PPPPPB3 = 0.0
PPPPPB = 0.0
PPNPPBI = 0.0
PPNPPB2 = 0.0
PPNPPB3 = 0.0
PPNPPB = 0.0

C INITIALIZE WRIST ROLL ANGLES TO 0.0
AMP = 0.0
AMP = 0.0

C SETUP ROTATION PARAMETERS
R11 = 11)1
R21 A(21
R31 =A (3,1)

C SETUP UP TRIG. FUNCTIONS
CiP = COS VP)
sip = SIN VP)
C23PP = COS (APP
S23PP = SIN (APP
C23PN = COS (APN
S23PN = SIN (AP
C4P1 = COS A4PI
S4P = SIN A4P1
C0P2 = COS 14P2
S4P2 = SIN 14P2
C5P1 = COS A5P1
S5P1 = SINIA5P1

115

C5P2 = COS (A5P2)
S5P2 = SIN (A5P2)

C COMPUTE TIE F R ST TERMS FOR THE ARCTAN2 FUNCTION
PPPPPA1 = 111 * (CIP * C23PP * S4P1) - (SIP * C4P1)
PPPPPA2 = 121 * SI5P * C23PP * S4P1) + (CiP * C4P1))
PPPPPA3 = 131 * (123PP * S01)
PPPPPA = - PPPPPl - PPPPPA2 + PPPPPA3
PPNPPA1 = 111 * ((CIP * C23PN * 54P2) - (SiP * C4P2)
PPNPPA2 = R21 * USP* C23PN * S4P2) + (CIP * C4P2))
PPNPPA3 = 131 * (23PN * S4P2)
PPNPPA = - PPNPPA1 - PPNPPA2 + PPNPPA3

C COMPUTE TIE SECOND TERNS FOR THE ARCTAN2 FUNCTION
PPPPPB1 = 111 * JC5PI * ((CiP * C23PP * C4P1) + (SiP * S4Pi))
$- (CIP *S23PP * 23P* 41)- CP 4P)
PPPPPB2 R 21 * cp (I 2P *C1 CP*SP)
S- (SIP *S23PP S5P1))
PPPPPB3 R 31 * ((S23P? * C4PI * C5P1) + (C23PP * S5P1))
PPPPPB =PPPPPB1 + PPPPPB2 - PPPPPB3
PPNPPB1 111 * (C5P2 * ((CIP * C23PN * C4P2) + (SiP * S4P2))
PPNPP S 21PN S5P2)) *C3N*CP' 'i
$PPB R2 (C* *CP * 5SP2323NPC2 - (CP* S4P2)

$- (SIP *S23PN SP
PPNPPB3 R 31 * (05234?2* CP 52 C3N*SP
PPNPPB =PPNPPBI + PPNPPB2 - 5P2)+ C2PN 5P)

C COMPUTE THE HAND ROLL ANGLE USING THE A1CTAN2 FUNCTION
A6PI = ATAN2 (PPPPPA,PPPPPB)
16P2 = ATAN2 (PPNPPA,PPNPPB)
RETURN
END

CCC
C RADIAN TO DEGREE CONVERSION ROUTINE

SUBROUTINE RADEG (RADi ,RAD2,DEG1 ,DEG2)
REAL RADI,RAD2,DEG1,DEG2,PI

C INITIALIZE LOCAL VARIABLES AND RETURNED VALUES
DEGI = 0.0
DEG2 = 0.0

C DECLARE CONSTANTS
PI = 3.141592653589792

C PERFORM CONVERSION
DEGi = RADi 180.0 /Pi
DEG2 = RAD2 *180.0 /PI
RETURN
END

CCC
C CHECK FOR VALIDITY OF SOLUTIONS

SUBROUTINE VALID(A)
REAL A(4,17)
INTEGER 1,J

C CHECK FOR VALIDITY ON ALL JOINTS.IF OUT OF RANGEFIRST COLUMN=i.0
C NOTE THAT THE RANGES ARE OFFSET BY 0.01 DEGREES TO TAKE CARE
C OF COMPUTATIONAL ERRORS CAUSED BY THE MACHINE.

DO 200 I = 1,4
C WAIST RANGE IS FROM + 147 TO -147 DEGREES.

IF(ABS(A(I,2) .GT. 147.01) O.01

116

C SHOULDER RANGE IS FlON + 56 TO -236 DEGREES.
SO (A(I%3) AGT. 56.01)_ OR. (I,3) ALT. -236.01)) .01.

C ELBO RNE IS RON + 56 TO -236 DGREES.
S A((,).T. 56.01 .01. (A1(1,4) ALT. -236.01)) .0R.

C WRIST ROLISCONTINJOUS. RNGE IS +/- 360 DEGREES.
s ABS(A(I,5) .GT. 360.01) A.01

C WRIST PITCH RANGE IS FlON + 90 TO -90 DEGREES.
$ ABS(A16) IGT. 90.01) A.01

C HAND ROLL IS CONTINUOUS. RANGE IS +/- 360 DEGREES.
I AI (1 GT. 360.01))THEN

C IF OUT OF RN E, SET FLAG (COL~ 1 OF RESPECTIVE ROW) =1.0

EIAFg) = 1.0

200 CONTINUE
RETURN
END

CCC
C NORILIZE THE COIPUTED RESULTS SO THAT EACH ANGLE RANGES
C FRO* -180.0 TO 180.0 DEGREES

SUBROUTINE NORIL(A)
REA 1(4,7)
INTEGER I,J

C NORIALIZE THE ANGLES TO BETWEEN -180 AND +180 DEGREES
DO 701 I = 1,4

DO 701 J = 2,7
IF(AIIJ) .GT. 180.0) THEN
A(iJ) =A IJ) - 360.0
ELSEIF (A(I9J~ LT. -180.0) THEN

1(12j) = A(I,J) + 360.0
ENDIF

701 CONTINUE
RETURN
END

CC

117

MERLIN 6500 MANIPULATOR INVERSE KINEMATICS SIMULATION - FORTRAN CODE

- RIGHT ARM

CCCCCCCCCCCCcCCC CCCCCcCCCCCCCCCCCCCCCCCCCCCCCcCCCCcCCcCCcCCCCCCC
C MERLIN ROBOT INVERSE KINEMATICS PROGRAM
C PROGRAMMED BY :-- RANVIR S. SOLANKI
C WRIGHT STATE UNIVERSITY
C DAYTON, OH - 45435
CCCCCCCcCCCCCCCCcCCcCCCCCCCCcCCCCCcCCCCCCCCCCCCCCCCCCCCcCCCCCCCC
C MAIN PROGRAM
C DEFINE REAL & INTEGER VALUES

INTEGER FLAG,RESTART,WSPACE
REAL T(4,4),Z(4,7 ,T1,T2P1,T2P2,T3P,T3N,T4A,T4B,T5A,T5B,
ST6A,T6B,A2,D2,D3,D4,D6,PI,VP,VN,SI,S2,EP,ENVRIVR2,

$WR3,VR4,WPIVP2,WP3,WP4,HR1,HR2,HR3,HR4,DUM,TPP,TPN
PRINT *,' MERLIN 6500 RIGHT SHOULDER ARM
PRINT *,' INVERSE KINEMATICS SIMULATION '

1 PRINT *,
C DEFINE VALUE OF CONSTANTS

PI = 3.141592653589792
C SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 50 LB. ROBOT
C A2 IS THE DISTANCE BETWEEN SHOULDER JOINT AND ELBOW JOINT

A2 = 17.38
C D4 IS THE DISTANCE FROM ELBOW JOINT TO WRIST PIN

D4 = 17.24
C D6 IS THE DISTANCE FROM WRIST PIN TO TIP OF THE END-EFFECTOR

D6 = 3.5
C SET UP D2 AND D3. D2 ISTHE DISTANCE FROM THE WAIST VERTICAL
C AXIS TO THE CENTER OF THE UPPER ARM. D3 IS THE DISTANCE FROM
C THE CENTER OFTHE UPPER ARK TO THE CENTER OF THE LOWER ARM.
C FOR RIGHT HAND, D2 AND D3 ARE

D2 = -19.00
D3 = 7.00

C INITIALIZE ALL GLOBAL VARIABLES (RETURNED VARIABLES ARE
C INITIALIZED INSIDE THE SUBROUTINE ONLY)

VP = 0.0
S1 = 0.0
S2 = 0.0
EP = 0.0
EN = 0.0
WRI = 0.0
VR2 = 0.0
VR3 = 0.0
VR4 = 0.0
WP1 = 0.0
VP2 = 0.0
WP3 = 0.0
VP4 = 0.0
HR1 = 0.0
HR2 = 0.0
HR3 = 0.0
HR4 = 0.0
DUN = 0.0

118

T2P1 = 0.0
T2N1 = 0.0
T2P2 = 0.0
T2N2 = 0.0

C INITIALIZE [Z] MATRIX
C THE FIRST COLUMN OF THE MATRIX IS A FLAG FOR VALIDITY OF THE
C SET OF JOINT ANGLES BEING ALL WITHIN THEIR RANGES. THE REMAINING
C 4 1 6 MATRIX IS USED TO STORE THE RESULTS OF THE COMPUTATIONS
C IN THE ORDER WAIST, SHOULDER, ELBOW, WRIST ROLL, WRIST PITCH,
C AND HAND ROLL.

DO 2 I = 1,4
DO 2 J = 1,7

2 CONTINUE
C ENTER POSITION AND ORIENTATION MATRIX FROM DATAFILE OR SCREEN
3 CALL NATENTER(T,D6)
C FLAG SET UP FOR END POSITION IN/OUT OF VORKSPACE.
C VSPACE = 0 IF THE END-EFFECTOR IS INSIDE THE WORKSPACE
C WSPACE = 1 IF THE END-EFFECTOR IS OUTSIDE THE VORKSPACE
C SET DEFAULT WSPACE FLAG = 0

WSPACE = 0
C CO1rUTE WAIST ANGLES TI
C IN THE CALL STATEMENT BELOW, T IS THE 4X4 POSITION AND
C ORIENTATION VORKSPACE, Ti IS THE COMPUTED WAIST ANGLE.

CALL WAIST(T,T1,D2,D3,WSPACE)
C IF POSITION DESIRED AS END-POINT IS OUTSIDE THE WORKSPACE,
C GET A NEW SET OF ENDPOINTS FROM THE USER.

IF(VSPACE .EQ. 1) THEN
GOTO 3

ENDIF
C CONVERT WAIST ANGLE FROM RADIANS TO DEGREES
C A DUMMY VARIABLE (DUM) IS USED HERE SINCE WE ARE DEALING
C WITH ONE WAIST ANGLE ONLY.

CALL RADEG(T1,0.O,VP,DUI)
C STORE RESULTS OF WAIST IN [Z] MATRIX (SECOND COLUMN)

DO 5 I = 1,4
Z(I,2) = VP

5 CONINU W
C RESET THE WSPACE FLAG TO 0 FOR ELBOW ANGLE COMPUTATIONS.

VSPACE = 0
C COMPUTE ELBOW ANGLES T3P,T3N.

CALL ELBOV(T,T3P,T3N,A2,D2,D3,D4,VSPACE)
C IF USER DEFINED END-POSITION IS OUTSIDE THE WORKSPACE,
C RE-ENTRY OF MATRIX BY THE USER.

IF(VSPACE .EQ. 1) THEN
GOTO 3

ENDIF
C CONVERT ELBOW ANGLES FROM RADIANS TO DEGREES

CALL RADEG(T3P,T3N,EP,EN)
C STORE RESULTS OF ELBOW ANGL SOLUTION IN THE FOURTH COLUMN
C OF MATRIX [Z]

DO 6 I = 1,2
Z (,4) = EP
Z (1+2,4) = EN

119

6 CONTINUE
C COMPUTE (SHOULDER + ELBOW) ANGLES TPP,TPN

CALL SHOULDER(T,A2,D4,T1,T3P,T3N,TPP,TPN)
C COMPUTE SHOULDER ANGLES T2P1,T2P2

T2P1 = TPP - T3P
T2P2 = TPN - T3N

C CONVERT SHOULDER ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T2PI,T2P2,S1,S2)

C STORE RESULTS OF SHOULDER ANGLES IN [Z] MATRIX (THIRD COLUMN)
DO 7 I = 1,2

Z(1,3) = SI
Z(1+2,3) = S2

7 CONTINUE
C COMPUTE WRIST ROLL ANGLES

FLAG = 0
CALL WROLL(T,T4P1,T4P2,T1,TPPTPN)

C CONVERT WRIST ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T4PI,T4P2,WRI,WR2)

C COMPUTE 'WRIST FLIPPED' SOLUTIONS
WR3 = WRI + 180.0
WR4 = WR2 + 180.0

C STORE RESULTS OF WRIST ROLL IN [Z] MATRIX (FIFTH COLUMN)
Z (1,5) = WRI
Z(2,5) = WR3
Z (3,5) = WR2
Z(4,5) = WR4

C COMPUTE WRIST PITCH ANGLES
CALL WPITCH(T,T5P1,T5P2,T1,TPP,TPN,T4P1,T4P2)

C CONVERT WRIST PITCH ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T5PI,T5P2,WP1,WP2)

C COMPUTE 'REVERSED PITCH' SOLUTIONS
WP3 = - VP1
WP4 = - WP2

C STORE RESULTS IN [Z] MATRIX - SIXTH COLUMN
Z(1,6) = WP1
Z(2,6) = WP3
Z(3,6) = WP2
Z(4,6) = WP4

C COMPUTE HAND ROLL
CALL HROLL(T,T6PI,T6P2,TITPPTPN,T4PI,T4P2,T5PI,T5P2)

C CONVERT HAND ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T6P1,T6P2,HR1,HR2)

C COMPUTE 'HAND FLIPPED' SOLUTIONS FOR HAND ROLL
HR3 = HRI + 180.0
HR4 = HR2 + 180.0

C STORE RESULTS IN THE [Z] MATRIX (SEVENTH COLUMN)
Z(1,7) = HR1
Z (2,7) = HR3
Z (3,7) = HR2
Z(4,7) = HR4

C NORMALIZE THE COMPUTED RESULTS
CALL NORMAL(Z)

C CHECK FOR VALIDITY OF EACH SOLUTION SET
CALL VALID(Z)

120

C PRINT OUT VALID RESULTS (VALID IF WITHIN JOINT ANGLE RANGE)
PRINT *,' THE VALID INVERSE KINEMATICS RESULTS ARE
DO 51 1 1,4

IF(Z(I,1) .EQ. 0.0) THEN
VRITE(5,*) 'THE VALID SOLUTION NUMBER IS ',I
WRITE(5,*) (Z(I,J),J=2,7)

ENDIF
51 CONTINUE
C QUERY FOR RESTART

RESTART 0
PRINT *,' TO RESTART PROGRAM, ENTER 1)
PRINT *,' TO EXIT THE PROGRAM, ENTER 0 '
READ(5,98) RESTART
IF(RESTART .EQ. 1) THENGOTO 1

ENDIF
98 FORMAT(I)

STOP
END

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccCCCCCCcCCCCcccccccccCCC
C POSITION AND ORIENTATION DATA ENTRY ROUTINE

SUBROUTINE MATENTER(A,D6)
INTEGER MATCH,TIP,DFILE
REAL A(4,4),PX1,PY1,PZ1,PX,PY,PZ,D6

C INITIALIZE LOCAL VARIABLES
PX1 = 0.0
PYl = 0.0
PZ1 = 0.0
PX = 0.0
PY 0.0
PZ = 0.0

C INITIALIZE MATRIX [A]
100 DO 101 1 = 1,4

DO 101 J = 1,4
A(I,J) = 0.0

101 CONTINUE
C SET DEFAULT TO READ FROM DIRECT KINEMATICS DATA FILE

DFILE = I
C READ FROM DATA FILE ?

PRINT *, READ TRANSFORM MATRIX FROM LDKIN.OUT ?
PRINT * ' ENTER 1 IF YES, 2 IF NO
READ(5, DFILE
IF(DFILE .EQ. 1) THEN
OPEN(UNIT:6,FILE:'LDKIN.OUT',STATUS='OLD')
DO 105 I : 1,4

READ(6,*) (A(I,J),J=1,4)
105 CONTINUE

CLOSE(UNIT=6)
ELSE

C DATA ENTRY OF POSITION AND ORIENTATION MATRIX
DO 102 I = 1,3

DO 102 J : 1,4
PRINT *.' ENTER TRANSFORM MATRIX ENTRY',I,J
READ(5,1) A(I,J)

121

102 CONTINUE
C ADJUST ROW 4 ENTRIES TO PREVENT ENTRY ERROR

A(4,1)= 0.0
A(4,2) = 0.0
A (4,3) = 0.0
A(4,4) = 1.0
EN DIF

C PRINT OUT MATRIX TO SCREEN
PRINT *,' '
PRINT *,' THIS IS THE ENTERED TRANSFORM MATRIX.
CALL AOUT(A)
PRINT *,' YOU VANT TO CHANGE THE MATRIX, ENTER 0
PRINT *,' IF POSITION ENTRIES REFER TO THE TIP OF THE
PRINT *,' END EFFECTOR ----- ENTER 1 '
PRINT *,' IF POSITION ENTRIES ARE WITH RESPECT TO THE
PRINT *,' WRIST PIN ---------- ENTER 2
READ(5,104) TIP

C ALLOW FOR CHANGE OF TRANSFORM MATRIX ENTRIES
IF(TIP .EQ. 0) THEN

GOTO 100

ENDIF
C ADJUST END EFFECTOR POSITION TO WRIST PIN IF POSITION GIVEN IS
C AT THE TIP OF THE END-EFFECTOR

IF(TIP .EQ. 1) THEN
C SETUP POSITION PARAMETERS TO END-EFFECTOR TIP

PX = A 1,4)
PYl = A(2,4
PZ1 3 A,4)

C ADJUST POSITION ARAMETERS TO WRIST PIN
PX = PX1 - D6 * A(1,3)
PY = PY1 - D6 * A(2,3)
PZ = PZ1 - D6 * A(3,3)

C RESET POSITION PARAMETERS IN [A] MATRIX TO WRIST PIN
A1(1,4) = PX
A (2,4) PY
A(3,4) PZ

END IF
104 FORMAT(I)

RETURN
END

CCC
C OUTPUT OF MATRIX TO SCREEN

SUBROUTINE AOUT(M)
REAL M(4,4)
INTEGER I,J
DO 10011 1,4
WRITE(5,*) (M(I,J),J=1,4)

1001 CONTINUE
RETURN
END

CCC
C WAIST ANGLE COMPUTATION

SUBROUTINE WAIST(A,W1,X2,X3,SPACE)
REAL A(4,4),W1,X2,X3,RHO,PX,PY,TERM1,TERM2,

122

$T2,X23
INTEGER I.J,SPACE

C INITIALIZATION OF LOCAL VARIABLES
WI = 0.0
TERMI = 0.0
TERM2 = 0.0
X23 = 0.0
T2 = 0.0

C SET UP OF POSITION PARAMETERSP1 = A(1,4)
PY = A2,4)

C COMPUTE FIRST TERM FOR WAIST ANGLE SOLUTION
TERMI1 ATAN2(PY,PX)

C COMPUTE TERM2
X23 = (X2 + X3)
PxSQ : Px * Px
PYSQ PY * PY
PXPYSq = PISQ + PYSq
X23Sq = X23 * X23

C IS USER-SPECIFIED POSITION INSIDE THE WORKSPACE ?
C SET FLAG TO INSIDE WORKSPACE

SPACE = 0
IF(PXPYSQ .GT. X23Sq) THEN

C SPECIFIED POSITION IS INSIDE WORK-SPACE, SO COMPUTE SECOND TERM
GOTO 301

ELSE
C USER SPECIFIED POSITION IS OUTSIDE WORKSPACE.
C
C COMPUTE DIFFERENCE IN TERMS

ERROR = (ABS(PXPYSQ - X23SQ))
C IF THE COMPUTED ERROR < 0.0001, THEN COMPUTATIONAL ERROR
C COULD HAVE CAUSED THE POSITION TO LIE OUTSIDE THE WORKSPACE.

IF(ERROR .LT. 0.0001) THEN
C YES, COMPUTATIONAL ERROR OCCURED. COMPUTE T2, FOLLOWED BY
C THE SECOND TERM.

T2 = SQRT(ERROR)
GOTO 302

ELSE
C USER SPECIFIED POSITION IS DEFINITELY OUT OF WORKSPACE

SPACE = I
PRINT *,' OUTSIDE WORKSPACE
GOTO 303

ENDIF
ENDIF

301 T2 = SQRT(PXPYSQ - X23SQ)
302 TERM2 = ATAN2(X23,T2)
C COMPUTE SOLUTION FOR WAIST ANGLE Wl

WI = TERMl - TERM2
303 RETURN

END
CCC
C ELBOW ANGLE DETERMINATION ROUTINE

SUBROUTINE ELBOW(A,EP,EN,B2,X2,X3,X4,SPACE)
INTEGER SPACE

123

REAL A(4,4),EP,EN,B2,X2,X3,X4,KA,KB,X23,TI,T2P,T2N
C INITIALIZE LOCAL VARIABLES

EP = 0.0
EN = 0.0
KA = 0.0
KB = 0.0
Ti = 0.0
T2P = 0.0
T2N = 0.0
X23 = 0.0

C SET UP POSITION PARAMETERS OF TRANSFORM MATRIX
PX = A(1,4)
PY = A(2,4)
PZ = A (3,4)

C COMPUTE F IRST TERM OF ARCTAN FUNCTION
X23 = (X2 + X3)
KA=- (PX * PX) - (PY * py) - (PZ * PZ)
KB = (B2 * B2) + (X23 * X23) + (X4 * X4)
TI = (KA + KB) / (2.0 * B2 * X4)
TISQ = TI * T1

C DETERMINE IF USER DEFINED POSITION IS OUTSIDE WORKSPACE
SPACE = 0

C POSITION IS INSIDE THE WORK-SPACE IF TlSQ < 1.0
IF(T1SQ.LE. 1.0) THEN

GOTO 401

ELSE
C USER DEFINED POSITION MAYBE OUTSIDE WORKSPACE
C THEREFORE, COMPUTE THE ERROR

ERROR = (ABS(1.0 - TlSQ))
C CHECK TO SEE IF COMPUTATIONAL ERROR COULD HAVE CAUSED THE
C POSITION TO LIE OUTSIDE THE WORKSPACE

IF(ERROR .LT. 0.0001) THEN
T2P = SQRT(ERROR)
GOTO 402

ELSE
C USER ENTERED POSITION IS OUTSIDE WORKSPACE

PRINT * OUTSIDE WORKSPACE
SPACE 1
GOTO 403

ENDIF
ENDIF

C COMPUTE SECOND TERM OF ARCTAN FUNCTION
401 T2P = SQRT(1.0 - TiSQ)
402 T2N = - T2P
C COMPUTE THE TWO POSSIBLE SOLUTIONS FOR ELBOW ANGLE I.E. EP & EN

EP = ATAN2(T1,T2P)
EN = ATAN2(T1,T2N)

403 RETURN
END

CCC
C SHOULDER + ELBOW ANGLE DETERMINATION ROUTINE

SUBROUTINE SHOULDER(A,B2,X4,VP,EP,EN,APP,APN)
INTEGER I,J
REAL A(4,4),B2,X4,WP,EP,EN,TIPP,TIPN,T2PP,T2PN,CIP,SIP

124

$C3P,C3N,S3P,S3N,TlPPA,T1PNAT2PPB,T2PNB,APP,APN
C INITIALIZE LOCAL VARIABLES

TIPP =0.0
TIPN =0.0
T2PP =0.0
T2PN =0.0
TIPPA 0.0
TIPNA 0.0
TIPP = 0.0
T1PN =0.0
T2PPB =0.0
T2PNB = 0.0
APP =0.0
APN 0.0

C SETUP OF POSITION PARAMETERS
PI A (1,4)
PY (2,4)
PZ A 3, 4

C COMPUTE CO SINI AND SINE FUNCTION VALUES OF THE APPROPRIATE ANGLES

CIP = SI~CBS VP

C3P =COS EP
S3P =SIN EP
C3N zCOS EN
S3N =SINIENI

C COMPUTE ALL POS IBLE FIRST TERMS OF ARCTAN2 FUNCTION
C
C WAIST POSITIVE ELBOW POSITIVE (TIPP)

TlPPA B2 C3P *PZ
TIPP (((B2 * S3P) - X4) *(CiP * PX) + (SIP * PY))) - TIPPA

C WAIST POSITIVYE, ELBOW NEGATIVE (Ti PN)
TIPNA B2 * C3N * PZ
TlPN (((82 * S3N - X4) *(CP*P)+(SIP * PY))) - TIPNA

C COMPUTE ALL POSSIBLE 4 COND TERMS OF ARCTAN2 FUNCTION
C
C WAIST POSITIVE, ELBOW POSITIVE (T2PP)

T2PPB ((82 *C3P) * (CiP *PX) +(SIP * PY)))
C T2PP (((B2 *53P) -4) * PZ) + T2PPB

CWAIST POSITIVE, ELBOW NEGATIVE (T2PN)
T2PNB =((B2 * C3N) * ((C iP * PX) + (SiP * PY)))
T2PN =(((82 * S3 N) X4) * PZ) + T2PNB

C COMPUTE ALL FOUR POSSIBLE SOLUTIONS OF (THETA 2 + THETA 3)
APP =ATAN2 (T1PPT2PP)
APN =ATAN2 (T1PN,T2PN)
RETURN
END

CCCCCCCCCCCCCCCCCCCC~cc
C WRIST ROLL ANGLE DETERMINATION ROUTINE

SUBROUTINE WROLL(i,PPP,PPN,WP,T23PP,T23PN)
INTEGER FPPP,FPPN
REAL A(4,4),PPP,PPN,WP,T23PP,T23PN,T1P,R13,R23,R33,
S51P,C1P,C23PP,C23PN,S23PP,S23PN,SNGCHK

C INITIALIZE LOCAL VARIABLES
TIP :: 0.0

125

T2PPP = 0.0
T2PPN = 0.0
PPP = 0.0
PPN = 0.0

C SET UP SINGULARITY CHECK CONDITION
SNGCHK = 0.005

C SET FLAGS TO NON-SINGULAR CASE
FPPP = 0
FPPN = 0

C SETUP MATRIX ORIENTATION PARAMETERS
R13 = A 1,3)
R23 = A 2,3
R33 = A 3,3

C SETUP TRIG. FUNCTIONS
SIP = SIN(VP)
CiP = COS(VP)
C23PP = COS (T23PP)
S23PP = SIN (T23PP)
C23PN = COS (T23PN)
S23PN = SIN(T23PN)

C COMPUTE ALL FIRST TERMS OF ARCTAN2 FUNCTION
TiP = - (R13 * SiP) + (R23 * CiP)

C COMPUTE ALL SECOND TERMS OF ARCTAN2 FUNCTION
T2PPP = -(R13*CIP*C23PP) - (R23*SIP*C23PP) + (R33*S23PP)
T2PPN = -(Ri3*CIP*C23PN) - (R23*SiP*C23PN) + (R33*S23PN)

C CHECK FOR SINGULARITY CONDITIONS AT WRIST PITCH
IF((TiP .LT. SNGCHK .AND. TIP .GT. - SNGCHK) .AND.

$(T2PPP .LT. SNGCHK .AND. T2PPP .GT.- SNGCHK)) THEN
FPPP = 1

ENDIF
IF((TiP .LT. SNGCHK AND. TIP .GT. - SNGCHK) .AND.

S(T2PPN .LT. SNGCHK AND. T2PPN .GT. - SNGCHK)) THEN
FPPN = 1

ENDIF
C SET WRIST ROLL TO 0.0 RADIANS IF SINGULARITY DETECTED
C AT WRIST PITCH, ELSE COMPUTE WRIST ROLL. NOTE THAT THIS WILL
C CAUSE THE ROLL TO SHOW UP ONLY IN HAND ROLL ANGLE.
C SOLUTION # 1

IF(FPPP .EQ. 1) THEN
PPP = 0.0

ELSE
PPP = ATAN2(T1P,T2PPP)

ENDIF
C SOLUTION # 2

IF(FPPN .EQ. 1) THEN
PPN = 0.0

ELSE
PPN = ATAN2(TIP,T2PPN)

ENDIF
RETURN
END

CCC
C WRIST PITCH DETERMINATION

SUBROUTINE VPITCH(A,A5PI,A5P2,WP,APP,APN,W4PI,W4P2)

126

REAL A(4,4),A5P1,A5P2,WP,APP,APN,V4P1,V4P2,
$T5AlPPPP,T5A2PPPP,T5A3PPPP,T5APPPP,T5AIPPNP,T5A2PPNP,T5A3PPNP,
$T5APPNP ,T5BlPPPP ,T5B2PPPP ,T5B3PPPP ,T5BPPPP ,T5BIPPNP ,T5B2PPNP,
ST5B3PPNP,T5BPPNP,R13,R23,R33,C1P,S1P,C23PP ,S23PP,
SC23PN,S23PN,C4P1 ,S4P1 ,C4P2,S4P2

C INITIALIZE LOCAL VARIABLES TO 0.0
T5A1PPPP =0.0
T5A2PPPP = 0.0
T5A3PPPP = 0.0
T5APPPP =0.0
T5A1PPNP =0.0
T5A2PPNP =0.0
T5A3PPNP =0.0
T5APPNP =0.0
T5B1PPPP =0.0
T5B2PPPP =0.0
T5B3PPPP =0.0
T5BPPPP =0.0
T5BlPPNP =0.0
T5B2PPNP z0.0
T5B3PPNP =0.0
T5BPPNP =0.0
A5P1 0.0
A5P2 =0.0

C SETUP ORIENTATION PARAMETERS
R13 =A (1,3)
R23 =A (2,3)
R33 =A (3,3)

C SETUP TRIG . FUNCTIONS
CIP =COS (VP)
sip= SIN(VP)
C23PP =COS (PP
S23PP =SIN (PP
C23PN 7COS (PN
S23PN = SIN (APNJ
C4Pl = COS(4P1
S4P1 SIN (V4P1
CW2 =-COS (V4P2)
S4P2 =SIN (V4P2)

C COMPUTE FIRST HtRM OF THE ARCTAN2 FUNCTIONS
T5A1PPPP -2- (R13 * (CiP * C23PP * C4P1) + (SiP * S4P1 j)

T5A2PPPP - - (R23 *USI P * C23PP * C4Pl) - (CiP * W4P))
T5A3PPPP R33 * S23PP * C4P1
T5APPPP T5A1PPPP + T5A2PPPP + T5A3PPPP
T5A1PPNP (R13 3*((CIP * C23PN * C42) + (SiP * S42))
T5A2PPNP (a23 * ((SP * C23PN * C4P2) - (CIP * 54P2))
T5A3PPNP -R33 * S23PN * C4P2
T5APPNP -T5A1PPNP + T5A2PPNP + T5A3PPNP

C COMPUTE SECOND TERMS 0P THE ARCTAN2 FUNCTIONS
T5B1PPPP 2-(Cl P * S23PP * R13)T5B2PPPP (SI P * S23PP * R23)
T5B3PPPP C23PP * R33)
T5BPPPP -T5B1PPPP + T5B"PPPP + T5B3PPPP
T5B1PPNP - (CiP * S23PN * R13)

127

T5B2PPNP = - SIP * S23PNj* R23)
T5B3PPNP = - (C23N * R33)
T5BPPNP = T5BlPPNP + T5B2 PNP + T5B3PPNP

C COMPUTE WRIST PITCHIANGLES USING ARCTAN2 FUNCTION
A5PI = ATAN2 (T5APPPP,T5BPPPP)
15P2 = ATAN2 (T5APPNP,T5BPPNP)
RETURN4
END

CcCCcCCCCCCCCCCCCCcccccccccccCCCcCCCCCCCCCCCCCcCCccccCCCCCCCCc
C DETERMINATION OF KIND ROLL ANGLES

SUBROUTINE HROLL(A,A6P1,A6P2,VP,APP,APN,A4PI1A4P2,A5PI1A5P2)
INTEGER I,J
REAL 1(4,4) A6PI1 6P2,VP,APP,APN,A4PI1A4P2,A5Pl ,A5P2,

SPPPPPA1 ,PPP PA2, PPPPPA3 ,PPPPPA,PPNPPA11,PPNPPA2 ,PPNPPA3 ,PPNPPA
$PPPPPB 1, PPPPPB2 ,PPPPPB3 ,PPPPPB ,PPNPPB1, PPNPPB2 ,PPNPPB3 ,PPNPPB

C INITIALIZE LOCAL VARIABLES TO 0.0
PPPPPA1 = 0.0
PPPPPA2 = 0.0
PPPPPA3 = 0.0
PPPPPA = 0.0
PPNPPA1 = 0.0
PPNPPA2 = 0.0
PPNPPA3 = 0.0
PPNPPA = 0.0
PPPPPB1 = 0.0
PPPPPB2 = 0.0
PPPPPB3 = 0.0
PPPPPB = 0.0
PPNPPBI = 0.0
PPNPPB2 = 0.0
PPNPPB3 = 0.0
PPNPPB = 0.0

C INITIALIZE WRIST ROLL ANGLES TO 0.0
A6PI = 0.0
16P2 = 0.0

C SETUP ROTATION PARAMETERS
l = A (1,1)

R21 = A221)
R31 = A(3,1)

C SETUP UP TRIG. FUNCTIONS
CiP = COS(VP)
sip = SI N(VP)
C23PP = COI AP
S23PP = SIN(APP)
C23PN = COS (PN)
S23PN = SIN (APNI
C4Pl = COS A4P1
S4Pl = SIN A4P1
C4P2 = COS A4P2
S4P2 = SIN A4P2
c5P1 = COS A5P1
5P = SIN A5P1
C5P2 = COS 15P2
S5P2 = SINIA5P2)

128

C COIPUTE TIE FIRST TERMS FOR TIE ARCTAN2 FUNCTION
PPPPPI1 = 111 *(CIP* C23PP* S4P1) -SiP* C4P1)
PPPPP12 = R21 *(SIP *C23PP *S4P1) + (CIP *C4P1))
PPPPP13 = 3.31 * (23PP *S4Pl)

PPPPPA = -PPPPPA1 - PPPPPA2 + PPPPPA3
PPNPPA1 = 111 * (CIP * C23PN * 4P2) - (sip* C14P2))
PPNPP12 = 121 * (SiP * C23PN *S4P2) + (ClP *C4P2))
PPNPPA3 = 131 * (S23PN *S4P2)
PPNPPA = -PPNPPA1 - PPNPPA2 + PPNPPA3

C COMPUTE TIE SECOND TERMS FOR TIE ARCTAN2 FUNCTION
PPPPPB1 = 111 * (C5P1 * ((CIP * C23PP * C4P1) + (SIP * S4P1))

$- (CIP *S23PP * S5P1))
PPPPPB2 R 21 * (C5P *(((SIP * C23PP * C4P1) - (CIP * S4P1))

$ - (SiP *S23PP * S5P1)
PPPB3 R 31 * ((S23P * C4P1 * C5P1) + (C23PP * S5P1))
PPPPPB =PPPPPB1 + PPPPPB2 - PPPPPB3
PPNPPB1 R II * (C5P2 * ((CIP * C23PN * C4P2) + (SiP * S4P2))
$ - (CiP S 23PN S5P2)
PPNPPB2 R 21 * (C5P2* ((SIP * C23PN * C4P2) - (CIP * S4P2))

PPNPP S2P 131P2
$PPB R3 (Si ((SS34* C4P2 * C5P2) + (C23PN * S5P2))
PPNPPB =PPNPPB1 + PPNPPB2 - PPNPPB3

C COMPUTE THE HAND ROLL ANGLE USING THE ARCTAN2 FUNCTION
16P1 = ATAN2 (PPPPPA,PPPPPB)
A6P2 = ATAN2 (PPNPPA,PPNPPB)
RETURN
END

CC
C RADIAN TO DEGREE CONVERSION ROUTINE

SUBROUTINE RADEG (RADI ,RAD2,DEG1 ,DEG2)
REAL RAD1,RAD2,DEG1,DEG2,PI

C INITIALIZE LOCAL VARIABLES AND RETURNED VALUES
DEGi = 0.0
DEG2 = 0.0

C DECLARE CONSTANTS
PI = 3.141592653589792

C PERFORM CONVERSION
DEGi = RADI * 180.0 /PI
DEG2 = RAD2 * 180.0 /PI
RETURN
END

CCC
C CHECK FOR VALIDITY OF SOLUTIONS

SUBROUTINE VALID (A)
REAL 1(497)
INTEGER I,J

C CHECK FilR VALIDITY ON ALL JOINTS.IF OUT OF RANGE,FIRST COLUNN=1.0
C NOTE THAT THE RANGES ARE OFFSET BY 0.01 DEGREES TO TAKE CARE
C OF COMPUTATIONAL ERRORS CAUSED BY THE MACHINE.

DO 200 I = 1,4
C WAIST RANGE IS FROM + 147 TO -147 DEGREES.

IF(ABSA(I,2) .GT. 147.01) O.01
C SHOULDER RANGE IS FROM +56 TO -236 DEGREES.

S ((A(1,3) .GT. 56.01) .01. (A(I,3) .LT. -236.01)) .OR.

129

C ELBOW RANGE IS FROM + 56 TO -236 DEGREES.
s ((A (1,4) GT. 56.01) .OR. (A(1,4) .LT. -236.01)) OR.

C WRIST ROLL IS CONTINUOUS. RANGE IS +/- 360.0 DEGREES.
$ ABS(A(I,5) .GT. 360.01) .OR.

C WRIST PITCH RANGE IS FROM + 90 TO - 90 DEGREES.
s AS(1% ,61 .GT. 90.01) .OR.

C HAND ROLL IS CONT NUOUS. RANGE IS +/- 360 DEGREES
$ ABS(A(I,7) .GT. 360.01)) THEN

C IF OUT OF RANGE,SET FLAG (COLUIN 1 OF RESPECTIVE ROW)= 1.0

NI1) = 1.0END F
200 CONTINUE

RETURN
END

CCC
C NORMALIZE THE COMPUTED RESULTS SO THAT EACH ANGLE RANGES
C FROM -180.0 TO 180.0 DEGREES

SUBROUTINE NORIAL(A)
REAL A(4,7)
INTEGER I,J

C NORMALIZE THE ANGLES TO BETWEEN -180 AND +180 DEGREES
DO 701I = 1,4
DO 701 J = 2,7

IF(A(I,J) .GT. 180.0) THEN
A(I,J) = A(I J) - 360.0
ELSEIF(A(I J) .LT. -180.0) THEN
A(I,J) = A(I,J) + 360.0ENDIF

701 CONTINUE
RETURN
END

CC

130

APPENDIX 5

MERLIN 6500 MANIPULATOR VORKSPACE DEVELOPMENT - FORTRAN CODE

VERTICAL WORKSPACE DEVELOPMENT

CCCCCCCCCCcccCCcCCCCcCCCCCCCCcccCCccCCCccccCCCCCccccCCccCccCCCCCcCCcCcccc
C PROGRAI VSPACE.FOR :== MERLIN 6500 VERTICAL WORKSPACE DRAWING
C BY :== RANVIR S. SOLANKI
C WRIGHT STATE UNIVERSITY
C DAYTON, OH 45435.
C GRAPHICIS PACKAGE USED : DISSPLA
CC

REAL X(1 ,2),Y(1,2),S,E,P,A2,A4,D6,PI
C SET VALUE OF P1.

PI = 3.141592653589792
C SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 ROBOT.
C A2 IS THE LENGTH OF THE UPPER ARE.

A2 = 17.38
C A4 IS THE LENGTH OF THE LOVER AR.

A4 = 17.24
C D6 IS THE DISTANCE FROM THE WRIST PIN TO THE TIP OF THE AU.

D6 = 3.5
C TWO TYPES OF OUTPUT ARE ALLOWED BY THIS PROGRAM, HARDCOPY BY USING C
THE OUTPUT FILE STDOOOO1DAT, AND SCREEN OUTPUT ON A TEKTRONIX
C 4010 SCREEN, WHICH CAN BE SCREEN-DUMPED.
C SETUP FOR OUTPUT FILE STD00001.DAT. OUTPUT FILE IS CURRENTLY
C ENABLED.

CALL TALARS
C SETUP FOR TEKTRONIX 4010 SCREEN OF HIGH RESOLUTION.
C THIS OPTION IS CURRENTLY DISABLED.
C CALL TEKALL(4010,960,0,1,0)
C SETUP PAGE SIZE OF 8" x 8"

CALL PAGE(8.0,8.0)
C SETUP PLOT AREA OF 7.5" x 7.5". A BORDER OF 1/2" IS NECESSARY.

CALL AREA2D(7.5,7.5)
C FRAME PLOT AREA.

CALL FRAME
C SETUP GRAPH SCALE (X RANGE FROM -50 TO 50, Y SAME AS X)

CALL GRAF(-50.0,'SCALE',50.O,-50.0,'SCALE',50.O)
C WRITE TITLE ON PLOT

CALL RLMESS('MERLIN 6500 VERTICAL WORKSPACE',30,-20.,-49.)
C
C DRAWING OF THE LINKS AS EACH LINK MOVES DEVELOPS THE VORKSPACE
C OF THE ROBOT ARM. THERE ARE ONLY THREE VERTICAL PLANE MOTIONS,
C SHOULDER MOTION, ELBOW MOTION, AND WRIST PITCH MOTION.
C DRAVING IN DISSPLA IS DONE BY CONNECTING TWO POINTS.
C EACH POINT IS SPECIFIED BY ITS 'X' AND 'Y' POSITIONS.
C 'X' IS POSITIVE TO RIGHT OF SCREEN, 'Y' IS POSITIVE UPWARDS.
C NO TRANSFORMATIONS ARE NEEDED, AS THE VERTICAL DIRECT KINEMATICS
C HAVE BEEN COMPUTED WITH THE BASE FRAME SET UP ACCORDING TO THE
C GRAPHICS FRAME, i.e., WITH X POSITIVE TO THE RIGHT, Y POSITIVE
C UPWARDS. THE X AND Y POSITIONS OF EACH POINT AT THE END OF THE
C LINK ARE COMPUTED AND STORED. THUS, [X(1,1), Y(1,1)] ARE THE X,Y

131

C COORDINATES OF THE FIRST POINT, WHILE [X(1,2), Y(1,2)] ARE THE
C COORDINATES OF THE SECOND POINT.
C
C DRAY GROUND LEVEL LINE
C
C I AXIS POSITION OF GROUND LEVEL LINE

X (1,1) = -45.0
(1,2) = 45.0

C Y AXIS POSITION OF GROUND LEVEL LINE
Y (1,1) = -46.45
Y(1,2) = -46.45

C DRAY GROUND LEVEL LINE
CALL CURVE(X,Y,2,0)

C INDICATE CENTER OF GROUND LEVEL LINE
1(1,1) = 0.0
X(1,2) = 0.0
Y(1,1 = -45.0
Y(1,21 = -48.0
CALL CURVE(X,Y,2 ,0)

C INDICATE GROUND LEVEL LINE ON PLOT.
CALL RLIESS('BASE LEVEL',10,-5.0,-45.0)

C DEVELOP VERTICAL VORKSPACE USING VERTICAL NOTION JOINT KINENATICS.
C
C INDICATE STEP SIZE FOR EACH JOINT ON THE PLOT.

CALL RLNESS('SHOULDER STEP SIZE = 9.125 DEGREES',34,-48.,46.)
CALL RLIESS('ELBOW STEP SIZE = 9.125 DEGREES',31,-48.,43.)
CALL RLIESS('WRIST PITCH STEP SIZE = 10.0 DEGREES',36,-48.,40.)

C DRAW UPPER AR LINK FROI 0,0 TO END OF LINK ACCORDING TO
C THE CURRENT SHOULDER ANGLE, IN STEPS INDICATED ABOVE.

DO 10 S = 237.0,-57.0,-9.125X(1,1) 0.0
Y(1,1) 0.0
1(1,2) = A2 * COS(S * PI / 180.0)

Y(1,2) = A2 * SIN(S * PI 180.0)
CALL CURVE(X,Y,2,0)

C DRAW LOVER AR LINK FROM BEGINNING TO END OF LINK ACCORDING TO
C THE CURRENT ELBOW ANGLE, IN STEPS INDICATED ABOVE.

DO 10 E = 146.0,-146.0 -9 125
X(11) = A2 * COS(S * Pi / 180.0)
Y = A2 * SIN(S* PI /180.0)
X(1,2) A2 * COS(S * PI / 180.0) +

$ A4 COS((S + E) * PI / 180.0)
Y(1,2) = A2 * SIN(S * PI / 180.0) +

$ A4 SIN((S+E)* P1 / 180.0)
CALL CURVE (X,Y,2,0)

C DRAW WRIST PITCH LINK (WRIST PIN TO TIP OF WRIST) ACCORDING TO THE C
CURRENT WRIST PITCH ANGLE, IN STEPS INDICATED ABOVE.

DO 10 P = 90.0 -90 0,-10.0
X(1,1) = A2 * COS(S * PI/ 180. +

SA4 * COS((S + E) *PI/ 180.0
Y(1,1) = A2 * SIN(S * PI / 180. +

SA4 * SIN((S + E)* PI/ 180.0
(1,2) = X(1,1)+ D6* COS((S + E + P * PI 180.0)

Y(1,2) = Y (1,1) + D6 *SIN((S + E + * PI 180.0)

132

CALL CURVE(X,Y,2,O)
10 CONTINUE
C CLOSE ALL DEVICES AND EXIT DISSPLA.

CALL ENDPL(O)
CALL DONEPL
CALL EXIT

C EXIT PROGRAM
STOP
END

CC

HORIZONTAL WORKSPACE DEVELOPMENT

CC
C PROGRAM HSPACE.FOR :== MERLIN 6500 HORIZONTAL WORKSPACE DRAWING
C BY :== RANVIR S. SOLANKI
C WRIGHT STATE UNIVERSITY
C DAYTON, OH 45435.
C GRAPHICHS PACKAGE USED : DISSPLA
cc

REAL 1(1,2),Y(1,2) ,VS P,L,A2,A4,D,D6,PI
C SET CONSTANT VALUES (Pi

PI = 3.141592653589792
C SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 ROBOT.
C A2 IS THE LENGTH OF THE UPPER ARl.

A2 = 17.38
C A4 IS THE LENGTH OF THE LOWER ARM.

A4 = 17.24
C L IS THE COMBINED LENGTH OF THE UPPER AND LOWER ARMS.

L = A2 + A4
C D IS THE OFFSET OF THE LOWER ARM FROM THE YO AXIS.

D = 12.0
C D6 IS THE DISTANCE FROM THE WRIST PIN TO THE TIP OF THE AR.

D6 = 3.5
C TWO TYPES OF OUTPUT ARE ALLOWED BY THIS PROGRAM, HARDCOPY BY
C USING THE OUTPUT FILE STDOOOO1.DAT, AND SCREEN OUTPUT ON A
C TEKTRONIX 4010 SCREEN, WHICH CAN BE SCREEN-DUMPED.
C SETUP FOR OUTPUT FILE STDOOOO1.DAT. OUTPUT FILE IS CURRENTLY
C ENABLED.

CALL TALARS
C SETUP FOR TEKTRONIX 4010 SCREEN OF HIGH RESOLUTION.
C THIS OPTION IS CURRENTLY DISABLED.
C CALL TEKALL(4010,960,0,1,0)
C SETUP PAGE SIZE OF 8" x 8"

CALL PAGE(8.0,8.0)
C SETUP PLOT AREA OF 7.5" x 7.5". A BORDER OF 1/2" IS NECESSARY.

CALL AREA2D(7.5,7.5)
C FRAME PLOT AREA.

CALL FRAME
C SETUP GRAPH SCALE (X RANGE FROM -50 TO 50, Y SAME AS X)

CALL GRAF(-50.0,'SCALE',50.0,-50.0,'SCALE',50.O)

133

C WRITE TITLE ON PLOT
CALL RLIESS('MERLIN 6500 HORIZONTAL WORKSPACE',32,-25.,-49.)

C
C DRAWING OF THE LINKS AS EACH LINK MOVES DEVELOPS THE WORKSPACE
C OF THE ROBOT ARM. THERE ARE ONLY TVO HORIZONTAL PLANE MOTIONS,
C THE WAIST MOTION AND THE WRIST YAW (ACTUALLY THE WRIST PITCH
C MOTION AFTER A SET ROLL OF 90 DEGREES).
C
C DRAWING IN DISSPLA IS DONE BY CONNECTING TWO POINTS.
C EACH POINT IS SPECIFIED BY ITS 'X' AND 'Y' POSITIONS.
C '1' IS POSITIVE TO RIGHT OF SCREEN, 'Y' IS POSITIVE UPWARDS.
C NO TRANSFORMATIONS ARE NEEDED, AS THE HORIZONTAL DIRECT KINEMATICS
C HAVE BEEN COMPUTED WITH THE BASE FRAME SET UP ACCORDING TO THE
C GRAPHICS FRAME, i.e., WITH X POSITIVE TO THE RIGHT, Y POSITIVE
C UPWARDS. THE X AND Y POSITIONS OF EACH POINT AT THE END OF THE
C LINK ARE COMPUTED AND STORED. THUS, [X(1,1), Y(l,1)] ARE THE X,Y
C COORDINATES OF THE FIRST POINT, WHILE [1(1,2), Y(1,2)] ARE THE
C COORDINATES OF THE SECOND POINT.
C
C DRAW REFERENCE LINE THROUGH 0,0
C
C X AXIS POSITION OF REFERENCE LINE.

X(1,1) = -45.0
X(1,2) = 45.0

C Y AXIS POSITION OF REFERENCE LINE.
Y(1,1) = 0.0
Y(1,2) = 0.0

C DRAW REFERENCE LINE.
CALL CURVE(X,Y,2,0)

C INDICATE CENTER OF REFERENCE LINE.
X 1,1 = 0.0
X(1,2) = 0.0
Y 1,1 = 2.0
Y(1,2) = -2.0
CALL CURVE(X,Y,2,0)

C INDICATE REFERENCE LINE ON PLOT.
CALL RLMESS('REF.',4,-48.0,-3.0)
CALL RLMESS('LINE',4,43.0,-3.0)

C DEVELOP HORIZONTAL VORKSPACE USING HORIZONTAL JOINT KINEMATICS.
C
C INDICATE STEP SIZE FOR EACH JOINT ON THE PLOT.

CALL RLMESS ('WAIST STEP SIZE = 3.0 DEGREES',29,-48.,46.)
CALL RLMESS('WRIST YAW STEP SIZE = 10.0 DEGREES',34,-48.,43.)

C DRAW SHOULDER OFFSET LINK FROM 0,0 TO END OF LINK ACCORDING TO
C THE CURRENT WAIST ANGLE 'W', IN STEPS INDICATED ABOVE.

DO 10 W = 147.0,-147.0,-3.0
X 1,1) 0.0
Y 1,1 = 0.0
X(1,2) -D * COS (W * PI / 180.0)
Y(1,2) = -D * SIN(W * PI / 180.0)
CALL CURVE(X,Y,2,0)

C DRAW ARM LINK FROM SHOUtDER JOINT TO WRIST PIN WITH THE SHOULDER
C ANGLE SET TO 90 DEGREES.

X(ll) = -D * COS(W * PI / 180.0)

134

im m mmmmmm nummwmm

X(1,2) = -D * COS(W * P1I 180.0) +
$ L * COS((W + 90.0) * PI 180.0)

Y1,1) * SIN (V * PI/180.0)
T(,) - SIN (V * P1j/180.0) +
L L .SIN ((W +90.0) *PI/180.0)

CALL CURVES X,Y,2,0)
C DRAW WRIST YAM G LINK (WRIST PIN TO TIP OF WRIST) ACCORDING TO
C THE CURRENT WRIST YAW ANGLE, IN STEPS INDICATED ABOVE.

DO 10 P 0 .0,-180.0,-10.0
X(l,1) =-D *COS(W *PI / 180.) +

S L * COS((W + 90.0) *PIl / 180.0)
Y(111) = -D *SIN(W *PI / 180.) +
L L*SIN((W +90.0) *PI / 180.0)

X(1,:2 = X(1 1) - D6*SIN(W + 90.0 + P) PI/ 180.0)
Y(1.2 =Y (1,1) + D6* COS (W+ 90.0 + P) PI 180.0)
CA CURVE(X,Y,2,0)

10 CONTINUE
C CLOSE ALL DEVICES AND EXIT DISSPLA.

CALL ENDPL(0)
CALL DONEPL
CALL EXIT

C EXIT PROGRAN
STOP
END

CC

135

APPENDIX 6

MANUFACTURERS DRAWINGS OF THE FINGERS AND THUMB

FOR THE UTAH/MIT DEXTEROUS BAND.

co 0

t-4i
uJJ5

0

ILI

136_

L ~

I u
I0

ILL

yr (~U = I 'z
Ui

DL:1u-4I14-I~

:2,0JUL

137

APPENDIX 7

DIRECT KINEMATICS SIMULATION FOR THE UTAH/MIT DEXTEROUS HAND

PROGRAM UDKIN.FOR

CCCCCcC CCCCCCCCCCCCCCCcCcCc CCCCCCCCCCCCCCCccCCCCCCCCCCCCcCCCccC
C UTAH/MIT DEXTROUS HAND DIRECT KINEMATICS SIMULATION PROGRAM
C BY :== RANVIR S. SOLANKI
C WRIGHT STATE UNIVERSITY
C DAYTON, OHIO - 45435
CC
C MAIN PROGRAM
C DEFINE REAL k INTEGER VARIABLES.

REAL ANG(4,4),T(4,4),F(F3(4,4),PT,PF1,PF2,PF3
INTEGER I,J, ERUN,FLAG

C AS MULTIPLE DIGITS ARE INVOLVED IN THIS SIMULATION, WE REPRESENT
C THE THUMB BY USING VARIABLES ENDING IN 'T', FINGER 1 VARIABLES
C WITH 'Fl', FINGER 2 WITH 'F2' AND FINGER 3 WITH 'F3'.
C DESCRIBE PROGRAM.

PRINT *,' THIS PROGRAM PERFORMS A MATHEMATICAL SIMULATION '
PRINT *,' OF THE KINEMATICS OF THE UTAH/MIT DEXTROUS HAND. '

10 PRINT *, '
C OPEN OUTPUT FILE 'HANDKIN.OUT'.

OPEN(UNIT=6,STATUS='NEV',FILE='HANDDKIN.OUT')
C FIND THE USER-DEFINED ANGLES FOR THE THUMB AND INGERS.

CALL ANGLES(ANG)
C THE USER HAS THE OPTION OF FINDING THE POSITION W.R.T. ANY
C POINT ON THE FINGERS OR THUMB, OR FINDING THE POSITION OF
C THE LAST JOINT. DETERMINE IF USER WANTS POSITION W.R.T.
C LAST JOINT ON FINGERS OR IF THE POSITION REQUIRED IS V.R.T.
C A PARTICULAR POINT ON THE FINGER OR THUMB.
C SET DEFAULT TO BE POSITION V.R.T. LAST JOINT.

FLAG = 0
CALL POSIT(FLAG,PT,PF1,PF2,PF3)

C COMPUTE THE DIRECT KINEMATIC TRANSFORM MATRICES [T] ,[Fl],[F2],[F3]
CALL DIRKIN(ANG,T,F1,F2,F3,FLAG,PT,PF1,PF2,PF3)

C OUTPUT THE DATA TO SCREEN AND A DATA FILE (HANDKI N.OUT)
CALL TOUT(T,F1,F2,F3)
RERUN = 0
PRINT *' RERUN SIMULATION ? (1= YES, 0 NO) = '
READ5,4) RERUN
IF(R RUN .EQ. 1) THEN

GOTO 10
ENDIF

C CLOSE OUTPUT FILE
CLOSE(UNIT=6)
STOP
END

CCC
C ENTRY OF JOINT ANGLES BY THE USER

SUBROUTINE ANGLES(ANG)
REAL ANG(4,4),PI,ANGLE(4,4)

138

INTEGER I,J,F
C TWO MATRICES ARE DEFINED HERE, [ANG] AND [ANGLE].
C MATRIX [ANGLE] IS THE MATRIX WHERE THE USER ENTERED VALUES FOR THE
C JOINT ANGLES ON THE THUMB (ROW 1 ENTRIES) AND ON FINGERS 1,2,3.
C (ROW 2,3,4 ENTRIES) ARE STORED IN DEGREES.
C THE DEGREE VALUES OF THE ANGLES FOR THE JOINTS ON THE THUMB AND
C FINGERS ARE THEN CONVERTED TO RADIANS AND STORED IN MATRIX [ANG].
C JOINT 0 DATA OF EACH FINGER/THUMB IS STORED IN COLUMN 1, JOINT 1
C DATA ai COLUN 2, JOINT 2 DATA IN COLUMN 3 AND JOINT 3 DATA IN
C COLUMN 4.
C ROW 1 REPRESENTS THE THUMB VALUES, ROW 2 REPRESENTS FINGER 1
C VALUES, ROW 3 REPRESENTS FINGER 2 VALUES, ROW 4 REPRESENTS FINGER
C 3 VALUES IN BOTH MATRICES [ANG] AND [ANGLE]
C DEFINE CONSTANT PI

PI = 3.141592653589792
C INITIALIZE MATRIX [ANG] AND [ANGLES] ENTRIES TO 0.0

DO 100 I = 1,4
DO 100 J = 1,4

C USER ENTERED ANGLES MATRIX (VALUES IN DEGREES)
ANGLE(I,J) = 0.0

C JOINT ANGLES MATRIX (VALUES IN RADIANS)
ANG(I,J) = 0.0

100 CONTINUE
C ENTRY BY USER OF THE THUMB ANGLES
C JOINT 0 ON THUMB
101 PRINT * 'ENTER THUMB JOINT 0 ANGLE (-45 TO -135 DEGREES) :>

REA(5,) ANGLE(,1)
C JOINT 1 ON THUMB
102 PRINT * 'ENTER THUMB JOINT 1 ANGLE (-15 TO +60 DEGREES) ::>

READ(5,) ANGLE(1,2)
C JOINT 2 ON THUMB
103 PRINT * 'ENTER THUMB JOINT 2 ANGLE (+6.5 TO +90 DEGREES) =

READ(5,) ANGLE(1,3)
C JOINT 3 ON THUMB
104 PRINT *,'ENTER THUMB JOINT 3 ANGLE (0 TO 90 DEGREES) >

READ(5,) ANGLE(1,4)
C USER ENTRYOF JOINT ANGLES FOR FINGERS

DO 110 F = 1,3
C JOINT 0 OF FINGERS 1,2 & 3
111 PRINT *,' ENTER FINGER ' F

PRINT *,' JOINT 0 ANGLE (65 TO 115 DEGREES) >
READ(5,*) ANGLE((F+1),i)

C JOINT 1OF FINGERS 1,2 & 3
112 PRINT *,' ENTER FINGER', F

PRINT *,' JOINT I ANGLE (120 TO 190 DEGREES) =->'
READ(5,*) ANGLE((F+1),2)

C JOINT 2 0 FINGERS 1,2 & 3
113 PRINT *,' ENTER FINGER', F

PRINT *.' JOINT 2 ANGLE (3.5 TO 90 DEGREES) =>
READ(5,) ANGLE((F+1),3)

C JOINT 3 OF FINGERS 1,2 & 3
114 PRINT ,' ENTER FINGER', F

PRINT * ' JOINT 3 ANGLE (0 TO 90 DEGREES) >
READ(5,4) ANGLE((F+I),4)

139

110 CONTINUE
C CONVERT ANGLES FROM DEGREES TO RADIANS, STORE RADIAN VALUES IN
C MATRIX [ANG]

DO 115 I = 1,4
DO 115 J = 1,4

ANG(I,J) = ANGLE(I,J) * PI / 180.0
115 CONTINUE
C WRITE TO FILE

WRITE (6,*)
WRITE (6, ANGLES DATA IN DEGREES.
WRITE (6,* ROWS REPRESENT THE DIFFERENT DIGITS. '
WRITE(6,* ' COLUMNS REPRESENT THE JOINT NUMBERS. '

DO 116 I = 1,4
YRITE(6,*) (ANGLE(I,J),J=l.,4)

116 CONTINUE
RETURN
END

CC
C USER ENTRY OF POINT ON FINGERS AND THUMB W.R.T. WHICH POSITION
C IS TO BE REPORTED.

SUBROUTINE POSIT(FLAG,AT,A1,A2,A3)
REAL AT,A1,A2,A3,TMAX.FIMAX,F2MAX,i3MAX
INTEGER FLAG

C INITIALIZE LOCALLY COYPUTED VARIABLES TO 0.0
AT = 0.0
Al = 0.0
A2 = 0.0
A3 = 0.0
PRINT *l' '
PRINT *,' ENTER 0 IF THE POSITION DATA REPORTED IS REQUIRED '
PRINT *,' V.R.T. THE LAST JOINT ON THE FINGERS AND THUMB. '
PRINT *,' ENTER I IF THE POSITION DATA IS TO BE REPORTED
PRINT *,' V.R.T. A POINT ON THE THUMB AND FINGERS OTHER
PRINT * THAN THE LAST JOINT
READ(5,300) FLAG

300 FORMAT(I)
IF(FLAC .EQ. 1) THEN

C DEFINE THE MAXIMUM LENGTH OF LAST LINK OF ALL FINGERS.
TMAX = 1.125
F1MAX 1.0625
F2MAX 1.0625
F3MAX 1.0625

C DETERMINE POSITION V.R.T. WHICH DATA IS TO BE REPORTED.
301 PRINT *,' ENTER DISTANCE ALONG THUMB (IN INCHES) V.R.T.

PRINT *,' WHICH YOU VANT THE POSITION TO BE REPORTED ->

READ(5,*) AT
IF (AT .GT. TMAX) .OR. (AT .LT. 0.0)) THEN
PRINT ' >>> ENTRY ERROR <<<
PRINT *,' MAX. LENGTH OF !HUMB LAST L'NK = ,TMAX,'INCHES'
GOTO 301
ENDIF

302 PRINT *,' ENTER DISTANCE ALONG FINGER 1 (IN INCHES) W.R.T.
PRINT *.' WHICH YOU WANT THE POSITION TO BE REPORTED =
READ(5,) Al

140

IF((AI .GT. FIMAX) .OR. (At LT. 0.0)) THEN
PRINT >' > ENTRY ERROR <<<)
PRINT *,' MAX. LENGTH OF FINGER 1 LAST LINK =' F1MAX,'INCHES'
GOTO 302

ENDIF
303 PRINT *,' ENTER DISTANCE ALONG FINGER 2 (IN INCHES) W.R.T.

PRINT *,' WHICH YOU WANT THE POSiVION TO BE REPORTED >
READ(S,*) A2
IF((A2 .GT. F2MAX) .OR. (A2 .LT. 0.0)) THEN

PRINT >,' >> ENTRY ERROR <<< I
PRINT *,' MAX. LENGTH OF FINGER 2 LAST LINK =',F2MAX,'INCHES'
GOTO 303

ENDIF
304 PRINT *,' ENTER DISTANCE ALONG FINGER 3 (IN INCHES) W.R.T.

PRINT * ' WHICH YOU WANT THE POSITION TO BE REPORTED
READ(5,;) A3
IF((A3 .GT. F3MAX) .OR. (A3 .LT. 0.0)) THEN

PRINT *,' >>> ENTRY ERROR <<< I
PRINT V' MAX. LENGTH OF FINGER 3 LAST LINK =',F3MAX,'INCRES'
GOTO 304

ENDIF
ENDIF
RETURN
END

cc
C DIRECT KINEMATICS 1MPLEMENTATION FOR THE UTAH/MIT HAND

SUBROUTINE DIRKIN(ANG,T,F1,F2,F3,FLAG,AT,A1,A2,A3)
INTEGER I,J,FLAG
REAL ANG(4,4),T(4,4) ,Fl14,4), F2(4,4),F3(4,4),C1T,C2T,C23T,
$C234T,S1 TS2 ,S23T%,234T,AOT,A1TA2T,A3T ,D1TPI,AT,A1,A2,A3,
$AOF1,AOF2,AOF3,ANGFI(1,4),ANGF2(1,4),ANGF3(1,4),MAT(4,4)

C MATRIX T REFERS TO THE POSITION AND ORIENTATION MATRIX OF THUMB.
C MATRIX Fl REFERS TO POSITION AND ORIENTATION MATRIX OF FINGER 1.
C MATRIX F2 REFERS TO POSITION AND ORIENTATION MATRIX OF FINGER 2.
C MATRIX F3 PEFERS TO POSITION AND ORIENTATION MATRIX OF FINGER 3.
C INITIALIZE ALL THE LOCALLY COMPUTED MATRICES

DO 401 I - 14
DO 401 J - 1,4
T(I,J) -o 0
F1(I,J) 0.0
F2 (Ij) 0.0
F3(,J) 0.0

40 CONTINUE
C ASSIGN THE (4,4) ERM OF ALL KINEMATIC MATRICES TO 1.0

T(4,4) 1.0
Fl (4,4) 1.6
F2 (4,4) 1.0
F3 4,4 1 .0

C THUMB COMPUTATIONS
C
C DEFINE COSINES A NiE, NLEDED FOR KINEMATICS FOR THE THUMB

CIT z COS(AN,(t,I)
C2T COS(ANG(1,2)
C23T COS(ANG(1,2 + ANG(1,3))

141

C234T = COS(ANG(1,2) + ANG(1,3) + ANG(1,4))
SIT = SIN(ANG(1,1l
S2T = SIN (ANG (1,2)
S23T = SI (AN (1,2) + ANG(1,3))
S234T = SI N(ANG(1,2 + (193) + ANG(1,4))

C DEFINE KINEMATIC PARAMETERS (AO,A1,A2,A3 & Dl) FOR THUMB IN
C INCHES.

IOT = - 0.75
AlT = 0.375
A2T = 1.70
A3T = 1.30
DlT = 3.125

C COMPUTE TIE KINEMATICS POSITION AND ORIENTATION MATRIX FOR THUMB.
T 1,1 =CiT * C234T
T 1,2 = - CiT * S234T
T 1,3 = SIT
T 1,4 = AOT + CiT * (AlT + (A2T * C2T) + (A3T * C23T))
T 2,1 = SiT *C234T
T 2,2 =-SIT S 234T
T 2,3 =-CiT
T 2,4 = SIT *(AlT + (A2 * C2T) + (13T * C23T))
T 3,1 = S234T
T 3,2 =C234T
T 3,3 = 0.0

T3, = A2T * S2T) + (AWT*S23T) + DlT
C FING R CP UTTIONS
C THESE TRANSFORM MATRICES ARE COMPUTED IN SUBROUTINE FINGER.
C FINGER 1 COMPUTATIONS
C STORE ANGLE DATA IN VECTOR ANGF1(l,4)

DO 402 I = 1,4
42 ANGFlj1,I) = ANG(2,I)

C SET AO TERN FOR FINGER 1
AOF1 = -1.375
CALL FINGER (NGF1,AoFi,Fi)

C FINGER 2 COMPUTATONS
C STORE ANGLE DATA IN VECTOR ANGF2(i,4)

DO 404 I = 1,4

40 NGF21lj) = ANG(31I)
C SET A0 TERN FOR FINGER 2

AOF2 = 0.0
CALL FINGER(ANGF2 ,AOF2 ,F2)

C FINGER 3 COMPUTATIONS
C STORE ANGLE DATA IN VECTOR ANGF3(l,4)

DO 406 I = 1,4
40 INGF3 1,I) = ANG(4,I)

C SET AO TERN FOR FINGER 3
AMF = 1.1875
CALL FINGER ANGF3,AOF3,F3)

C IF THE USER HAS REQUESTED FO POSITION TO BE REPORTED V.R.T. A
C POINT ALONG THE LAST LINK, THEN UPDATE POSITION VECTOR TO BE
C (POSITION VECTOR + (NORMAL VECTOR * LENGTH)).

142

IF(FLAG .EQ. 1) THEN
T(194) = T(114) + T 1,1) T
T2:4) = T(2,4) + ~T 2,1 IAT
T(3,4) =T(3,4) +T 3,1 IAT)
Fl 1,4 = Fl 1,4 Fl F11 1 1l
Fl 2,4 = Fl 2,4 + Fl 2,1 * Al
Fl1394 = Fl3,4 + Fl13,1 *Al
F2 1,4 = F2 1,4 + F2 1,1 k 2
F2 2,4 = F2 2,4 + F2 2,1 *A2
F2 3,4 = F2 3,4 + F2 3,1 1A2
F3 194 = F3 1,4 + F31,1 1A3
F3 2,4 = F3 2,4 + F3 2,1 1 3
F3 3,4 = F3 3,4 + F3 3,1 1A3

ENDII
RETURN
END

cCCCCcccCcCCCCCCCCCCCCccccccccccccccCcCCCCCCCCCCcCCCCCCCCCCCCccc
C OUTPUT TO SCREEN AND DATA FILE "KANDKIN.OUT"

SUBROUTINE TOUT (T,Fl,F2,F3)
REAL T(4,4)gFl(4 ,4)F(44 ,F3 (4,4)
INTEGER IJ

C DESCRIBE OUTPUT IN DATA FILE
WRITE (6,*) 9TRANSFORMATION MATRICES W.R.T. BASE FRAME 9
WRITE (6,) ' '

C WRITE OUT THUIB MATRIX IT]
PRINT * 9 THUMB iTR X
WRITE(6,*) THUMB MATRIX'
WRITE(6,*)9
DO 501 I1 1,4

C WRITE TO SCREEN
WRITE(5 ,*) (T(I,J),J=l,4)

C WRITE TO OUTPUT ILE BANDKIN.OUT

51 WRITE 6,*) (T(I9J),J=l,4)

PRINT *, 9

C WRITE OUT FINGER 1 MATRIX [Fl]
PRINT *9 FINGER 1 MATIX
WRITE (6,*) '

WRITE (6,9 FINGER 1 MATRIX
WRITE (69*)
DO 502 I1 1,4

C WRITE TO SCREEN
WRITE (5,*)(F1(I,J),J=1,4)

C WRITE TO OUTPUT PILE HANDIN.DAT
52 WRITE 6,*) (Fl(I,3),J=1,4)

PRINT *,' 9

C WRITE OUT FINGER 2 MATRIX [F21
PRINT *)9 FINGER 2 MATRIX 1
WRITE (6,
WRITE (6,*) 9 FINGER 2 MATRIX '

WRITE (6,*)'
DO501 = 194

C WRITE TO SCREEN

143

WRITE 5,*)(F2 (I,),= 1,)l
C WRITE TO OUTPUT WIE IDKI N. DT

50 YRIE6,*) (F2(IJ),J=1,4)

PRINT *,' I
C WRITE OUT FINGER 3 MATRIX [F3]

PRINT *,' FINGER 3 MATI I
WRITE (6, '* :
WRITE (6,*) 'INGER 3 MATRIX '

WRITE (6, *)'
DO 504 1 = 1,4

C WRITE TO SCREEN
WRITE5 (4* (P3jq (J),J=1,4)

C WRITE TO OUTPUT MIL IADKIN. DAT
54 WRITEJ6,*) (F3(IJ),J=1,4)

RETURN
END

C KINEMATIC COMPUTATONS FOR FINGERS.
SUBROUTINE FINGER(A AOF,KIN)
REAL A(1 ,4bKIN(4,4i,A0F
INTEGER I, J

C INITIALIZE LOCALLY COMPUTED MATRIX [KIN]
DO 601 I = 1,4

DO 601 J = 1,4
601 KINI,J) = 0.0

C SET TRANSFORM MIX KIN[4,4] TERN TO 1.0
KIN(4,4) = 1.0

C DEFINE PI
PI = 3.141592653589792

C DEFINE TIE VALUE OF ANGLE PHI IN DEGREES FOR TIE FINGERS.
PHI = 12.0

C CONVERT ANGLE PHI TO RADIANS.
RPII = PHI * P1 / 180.0

C DEFINE COSINES AND SINES FOR ANGLE PHI.
OPHI = COS (RPHI)
SPHI = SIN (RPII)

C DEFINE COSINES AND SINES FOR FINGERS.
CiF = COS A1,)
C2F = COS A1,2))
C23F = COS (A(1,2) + 1(113))
C234F = COS 1A(1,2) + A(1,3) + 1(1,4))
SiF = SINJA 1,1))S2F = SIN A
S23F = SI 112+ A(113))
S234F = SI (1(1 2) + A(1) + A(1,4)

C DEFINE KINEMATIC PARAMETERS (Al 1A2,A3 & DI) FOR FINGERS.
AlF = - 1.2 *SIN(30 .0 * 1/180.0)
A2F = 1.7
A3F = 1.3
DiP = (4.25 /CPHI) + (1.2 *COS(30.0 * PI / 180.0))

144

C COMPUTE THE KINEMATIC POSITION AND ORIENTATION MATRII FOR FINGERS.
KIN 1,1 = CIF * C234F
KIN 1,2 = - CIF * S234F
KIN 1,3 = SIF
KIN 1,4 = A0F + CIF * (AlF + (A2F *C2F) + (13F * C23F))
KIN 2,1 = (SPII *S234F) + (CPu Si! * C234F)KIN 2,2 = (SPI C234F) - (CKI Si! S234F)
KIN 2,3 = - CPHI* CIF
KIN 2,4 1= (DiF * SPII) + CPHI * SF* (AlF + (12F * C2F)

$+J3F C23Fj+ SPHI * ((12F * S2F~ + (13F * S23F))
KIN (3,2 = (CPI C2341) + (SPI Si! S234F3
KIN (3,3) = SPHI * ClF
KIN(3,4' = (Dl! * CPII) *- SPRI * SI * (All + (A2F * C2F)
$+ (13F C23F)) + CPU * ((A2F * S2F) + (13F * S231))

END

145

APPENLIX 8

COMPUTER GRAPHICAL SIMULATION - FORTRAN CODE
AND DOCUMENTED DATA FILES

PROGRAM SIMULATION. OR

eCCC
DIMENSION XO(8,3,1O,14),GO(3,2,10,14) ,TR (4,4910,14),B (6),C(6),
SFOCUS() ,AXDAT(8,3) ,XD(8,2,1000) ,LINKNUM(20) ,CF(4) ,1(6,4),
$112(6,4)2M3(614,10) J1MTS(6, 2)
REAL X0,TR,GO,XD,D,PI,XYZZPOINT,B,]IANG,FOCUS,IG,
$ ANGLE,TEMP,XH,YH,ZH,XP,YP,ZP,LIMITS,M1 ,M2,13
INTEGER NUM,ROBNUM,A,C,COUNT,BF,N1 ,N2,N,ACTIVE,
$ F ,OPTION SET ,EXECUTE ,SYSNUX,LINKNUM,RECEIVYE ,ANDNUM(2),

$ ROOMNUM,MERLNUM(2) ,CF ,END ,MONITOR,INIT ,KINNUM,STEPS
CHARACTER DFILE*20
LOGICAL DRAW(6) ,ERASE, REPEAT

CCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCCCCCCCCCCCCCCCCCCC
C SET-UP PARAMETERS
C Z IS INITIAL VIEWPOINT IN INCHES ALONG Z AXIS

Z=220
C ZPOINT IS TOTAL INITIAL DISTANCE FROM DRAWING ORIGIN TO VIEWPOINT

ZPOINT=220
C DRAW115) ARE LOGICAL VARIABLES
C IF T lE LOGICAL IS FALSE THAT UNIT WILL NOT BE DRAWN
C IF TRUE - THAT UNIT WILL BE DRAWN
C ROOM = DRAW()
C LEFTARI MERLIN = DRAW 2
C RIGHTI MERLIN = DRAW 3

C LETHID UTR = DRAWt4
C RIGITHAN THLFIND UTAH = DRAW 41

DRAW 1 = .TRUE.
DRAW (2) = .TRUE.
DRAW (3) = .FALSE.
DRAW (4) = .TRUE.
DRAW 5~ = .FALSE.

C MAG IS INITIAL MAGNIFICATION
MAG=l

C REPEAT IS LOGICAL TO TELL IF MORE THAN ONE VIEW IS TO BE DRAWN
REPEAT = .FALSE.

C PI VALUE OF PI
PI=ACOS(-1.0)

C THE ACTIVE ROBO WILL BE TIE LEFTHANDED ROBOT
ACTIVE= 1

C
C READ ROOM.DAT
C
C 10 STORES 3-DIMENSIONAL COINER POINTS OF ALL LINKS
C EXAMPLE 10 (I,J,K,L)
C I IS THE POINT NUIbR
C J IS THE 3 DIMENSIONAL POINT VECTOR
C K IS THE LINK NUMBER
C L IS THE SYSTEM NUMBER

146

C Go STORES TRANSLATIONAL AND ROTATIONAL VECTORS ALL LINKS
C GO(I ,J,K, L)
C I S TIE TRANSLATION VECTOR
C J IS TIE ROTATION VECTER
C K IS TIE LINK NUMBER
C L IS TIE SYSTEM NUMBER
C
C LININUX NUMBER OF LINKS IN EACH SYSTENIA FINGER IS A SYSTEM)
c
C ROBNUI COUNTER FOR READING ROBOTS

ROBNIJM ROBNUM + 1
C ROOMNUM ROOM SYSTEM NUMBERING VARIABLE

ROOMNUM ROBNUM
CC
C FILE 'ROOM.DAT' STORES TIE 3-DIMENSIONAL POINTS DEFINING TIE ROOM

OPEN(UNIT=7 ,FILE='ROOM.DAT' ,STATUS = 'OLD')
REA (,*) LINKNUM(ROOMNUM)
REA (7, *) 1(((OI JKROO NUM) ,I=1,8),J=1,3),K=
S1,LINKN M R BNUMI
READ (7,*) (((G (,K ROOMNUM)j,=1,3),J=1,2),

S K1,LIKNUK(RO

C CLOSE(IJNIT=7) OMU)

C READ MERL.DAT
C

DO 87 N = 1,2
ROBNUM=ROBNUM+ 1

C MEILNUK KERLIN ROBOT NUMBERING VARIABLE
C IERLNUI (1) LEFT HAND , MERLNUM(2) RIGHT HAND

MERLNUI(N) = ROBNUM
C RECEIVE NUMBER OF SYSTEM TO BE LINKED TO (ROBOT TO ROOM)

RECEIVE (ERLNUM(N)))=RO DNUM
C MERL.DAT STORES TIE 3-DIMENSIONAL DATA POINTS,TRANSLATION VECTORS,
C AND ROTATION VECTORS

OPEN(UNIT=7,FILE='MERL.DAT' ,STATUS = 'OLD')
READ (7,*) LINKNUM(ROBNUM)
READ (7,*) ((XO I JK,ROBNUl), I=1,8),J=1,3),K=
S1,LINKN1JM R B
READ (7,) 2K(G ROBNUM),I=1,3),J=1,2),
$ K=,1,I (ROBNUIJ)
CLOSE UNIT=7)

87 CONTINUE
C ADJUST TRANSLATION MATRIX FROM FILE 'IERL.DAT' TO BUILD A
C RIGHT HANDED ROBOT

Go (1,1,2,MERLNUM 2): X0(1612,ROONNUM) -GO(1,1,2,MERLNUM(2))
GO (2,1,5,MERLNUI (2) G (2,1,5 ,IFLNUM(2))
GO (3,1,6,MERLNUI(2)) -GO (3,1,6,NERLNUM()

C GO (3,1,7,IERLNUM (2)) -GO (3,1,7,MERLNUM(2)

C

C INDNUM SYSTEM NUMBERING VARIABLE
C HANDNUM(1) LEFT HAND HANDNUM(2) RIGHT HAND

147

DO 111 N=1,2
HANDNUM(N)=ROBNUM + 1
RECEIVE(HANDNUM(N)) = IERLNUI(N)
DO 98 I=1,4

RECEIVE(HANDNUI(N) + I) = HANDNUM(N)
98 CONTINUE

C 'UTAI.DAT' IS DATA FILE WHICH STORES THE POINT VECTORS,TRANSLATION C
VECTORS, AND ROTATION VECTORS WITH RESPECT TO EACH LINKS OWN
C COORDINATE SYSTEM.

OPEN(UNIT=7,FILE='UTAH.DAT',STATUS='OLD')
DO 109 L=1,5

ROBNUM=ROBNUM+1
READ(7,*)LINKNUM(ROBNUM)READ(7,*)(((RO(I,J,K,ROBNUM),I=I,8),

$ J=I3)K=l,LINKNUM(ROBNUM))

READ(7,*)((J(GO(I,J,K,ROBNUM),I=1,3),
1 J=1,2),K=1,LINKNUI(ROBNU))109 CONTINUE

CLOSE(UNIT=7)

111 CONTINUE
C ADJUST TRANSLATION MATRIX FROM FILE 'UTAIH.DAT' TO BUILD A
C RIGHT HAND

GO (1,1,2, (HANDNUM (2) +1) ::Go (1,1,2, (HANDNUM 2 +1)
GO (1,1,2, HANDNUM (2) +2) GO 1,1,2, HANDNUM 2 +2
GO (1,1,2, HANDNUM(2) +3) =-GO 1,1,2, HANDNUM 2 +3
GO (I,1,2, HANDNUM(2)+4)=-GO (1,1,2, HANDNUM(2)+4))

CCC

C INITIAL VIEWPOINT
C
C INIT INITIAL SETUP VARIABLE-CAUSES PROGRAM TO
C CALCULATE INITIAL VIEWING ANGLES.
C

INIT = 1
GOTO 199

119 INIT = 0
C
CC
C MONITOR SETUP
C
C MONITOR TYPE OF WORKSTATION VARIABLE
C

WRITE (6,*)'IF WORKING ON A TEKTRONICS 4010 - ENTER 1'
WRITE (6,*) 'IF WORKING ON A TEKTRONICS 4207 - ENTER 2'
WRITE (6*)'IF WORKING ON A REGIS - ENTER 3'
READ(6,*4 MONITOR
WRIT 6, *)CCCCCCCCCCC C CCC

C INITIAL DRAW
C SETTING OPTION EQUAL TO ZERO TELLS THE PROGRAM WHERE TO RETURN
C AFTER THE INITIAL DRAWING.

OPTION = 0
C GO TO THE DRAWING ROUTINE

GO TO 587

148

CCcCCCCCCCCCCCCCc
C MAIN MENU
C
C OPTION MENU SELECTION VARIABLE
C
143 WRITE 6,*)' OPTIONS'

WRITE 6,*)' GO TO SET-UP MENU - ENTER 1'
WRITE 6,*)' GO TO EXECUTE MENU - ENTER 2'
WRITE 6,*)' DRAW CURRENT ROBOT - ENTER 0'
WRITE 6,*)' QUIT - ENTER 10'
READ*,OPTIONWRITE(6,*)

CCCCCCCCCCC CCC
C SETUP MENU
C
C SET SETUP MENU SELECTION VARIABLE
C

IF (OPTION .EQ. 1) THEN
157 WRITE 6,* 'CHANGE VIEWPOINT, INPUT - 1'

WRITE 6,* 'CHANGE FOCUS,AND MAGNITUDE, INPUT - 3'
WRITE 6,* 'CHANGE SYSTEMS DRAWING, INPUT - 4'
WRITE 6,* 'CHANGE FIXED HAND POSITION, INPUT - 6'
WRITE 6,* 'REPOSITION ROBOT, INPUT - 7'
WRITE 6,* 'CHANGE ACTIVE ROBOT INPUT - 8'
WRITE 6,* 'RETURN TO MAIN MENU, INPUT - 9'
WRITE 6,* 'DRAW ROBOT INPUT - 0'
WRITE 6,*)'QUIT INPUT - 10'
READ*,SET

WRITE(6,*)
cc
C VIEWPOINT
C
C X,Y,Z - THE VECTOR TO THE VIEWPOINT
C

IF (SET .EQ. 1) THEN
WRITE(6,*)
WRITE (6,*)'OLD VIEWPOINT - X,Y,Z'
WRITE (6,190)X,Y,Z

190 FORMAT(' ',3F6.0,' INCHES')
WRITE(6,*)'INPUT - NEW VALUES - X,Y,Z IN INCHES'
READ*,X,Y,Z
WRITE(6,*)

C THE FOLLOWING CODE DETERMINES THE ORIENTATION OF THE ROOM AND
C EVERYTHIN INSIDE.
C
C FIRST DETERMINE THE PITCH OF THE VIEWPOINT
C

199 IFZ .EQ. 0) THEN
(X .EQ. 0) THEN
G0(2,2,1,1)=0
ELSE IF (X .LT. O) THEN

GO(2,2,1,1)=PI/2
ELSE

GO(2,2,1,1)=-PI/2

149

END IF
ELSE

GO(2,2,1,1)=-ATAN(X/ABS(Z))
END IF
IF (Z .LT. 0) THEN

GO(2,2,1,1)=PI - GO(2,2,1,1)
END IF

C
C ROTATE ROOM FOR A SIDE (OR OTHER) VIEW
C

IF ((X ,EQ. 0) .AND.(Z .EQ. 0)) THEN
IF (Y .LT. 0) THEN

GO(1,2,1,1)=-PI/2
ELSE

GO(1,2,1,1)=PI/2
END IF

ELSE
GO(1,2,1,1)=ATAN(Y/SQRT((X*X)+(Z*Z)))

END IF
C
C DISTANCE FROM VIEWPOINT TO FOCAL POINT(WHICH IS INITIALLY [0,0,0])
C

ZPOINT=SQRT(X*X+Y*Y Z*Z)

IF (INIT *EQ. 1) THEN
GO TO 119
ELSE IF (INIT .EQ. 2) THEN

GO TO 502
END IF
WRITE(6,*)
GO TO 157

C
C FOCUS AND MAGNITUDE
C
C FOCUS TWO DIMENSIONAL SCREEN FOCAL POINT FOR VIEWING
C X IS POSITIVE TO THE RIGHT
C Y IS POSITIVE UPWARDS
C
C NAG MAGNIFICATION VALUE
C

ELSE IF (SET .EQ. 3) THEN
WRITE (6,*)' OLD FOCUS X,Y IN INCHES'
WRITE(6,259) (FOCUS(I),I=1,2)

259 FORMAT(' ',2F6.0,' INCHES')
WRITE(6,*)' INPUT NEW FOCUS IN INCHES'
READ ,(FOCUS(II=1,2)
VRITE(6,*)' 4D MAGNIFICATION'
WRITE(6,264) NAG

264 FORMAT(' ',F6.0)
WRITE(6,*)' INPUT NEW MAGNIFICATION'
READ NAG

WRITE(6,*)
GO TO 157

C SYTEMS DRAWING MENU
C - CAUSES THE SYSTEMS TO BE OR NOT TO BE DRAWN

150

ELSE IF (SET .Eq. 4) THEN
270 IF (DRAW(1) .EQV. .TRUE.) THEN

WRITE (6,*)'DO NOT DRAW ROOM, ENTER 1'
ELSE
WRITE(6,*)'DRAY ROOM, ENTER I'
END IF

IF (DRAW(2) .EqV. TRUE.) THEN
VRITE(6,*)'DO NOT DRAW LEFTAR KERLIN, ENTER 2'

ELSE
WRITE(6,*)'DRAW LEFTAR MERLIN, ENTER 2'

END IF
IF (DRAW(3) .EqV. .TRUE.) THEN

WRITE (6,*)'DO NOT DRAW RIGHTAR MERLIN, ENTER 3'
ELSE

WRITE(6,*)'DRAV RIGHTAR MERLIN, ENTER 3'
END IF
IF (DRAW(4) .EQV. .TRUE.) THEN

WRITE(6,*)'DO NOT DRAW LEFTHAND UTAH, ENTER 4'
ELSE

WRITE(6,*)'DRAW LEFTHAND UTAH, ENTER 4'
END IF
IF (DRAW(5) .EqV. .TRUE.) THEN

WRITE (6,*)'DO NOT DRAW RIGHTHAND UTAH, ENTER 5'
ELSE

WRITE(6,*)'DRAW RIGHTHAND UTAH, ENTER 5'
END IF

VRITE(6,*)'TO QUIT, ENTER 6'
READ *,N
IF (DRAWN) .EQV. .FALSE.) THEN

DRAW(N) .TRUE.
ELSE

DRAW(N) .FALSE.
END IF
IF (N .EQ. 6) THEN

GOTO 157
END IF
GOTO 270

C POSITION HAND
C
C ANG,ANGLE TEMPORARY STORAGE OF ANGLES FOR READING INPUT
C

ELSE IF (SET .EQ. 6) THEN
WRITE(6,*) ' YOU ARE GOING TO BE ASKED FOR PITCH,
s YAW, AND ROLL,'
WRITE(6,*) AND THEN X,Y, AND Z OFFSET FOR THE UTAH HAND'
WRITE(6,*)' WITH RESPECT TO THE CENTER END OF THE ARM'

C THE YAW,PITCH, AND ROLL ANGLES ARE APPLIED TO A BLANK INITIAL
C VECTOR MATRIX ON THE HAND, AS IS THE OFFSET VECTOR
C YAW
C

WRITE(6,302) GO(1,2,2,HANDNUM(ACTIVE))/PI*180
302 FORMAT(' CURRENT YAW ANGLE IS',F8.2, DEGREES')

WRITE(6,*)'INPUT NEW YAW ANGLE IN DEGREES'
READ*,ANGLE

151

GO(1,2,2,HANDNUM(ACTIVE))=ANGLE/180*PI
C PITCH

WRITE(6,308 GO(2,2,2,HANDNU(ACTIVE))/PI*180
308 FORMAT(' CURENT PITCH ANGLE IS',F8.2,' DEGREES')

VRITE(6,*) 'INPUT NEW PITCH ANGLE IN DEGREES'
READ*,ANGLE
GO(2,2,2,HANDNUM(ACTIVE))=ANGLE/180*PI

C ROLL
WRITE(6,314) GO(3,2,2,HANDNUM (ACTIVE))/PI*180

314 FORMAT(' CURRENT ROLL ANGLE IS',F8.2,' DEGREES')
VRITE(6,*) 'INPUT NEW ROLL ANGLE IN DEGREES'
READ*,ANGLEGO(3,2,2,HANDNUM(ACTIVE))=ANGLE/180*PI

C OFFSET
C
C XH,YH,ZH HAND POSITIONING VARABLES
C

WRITE 6,*) 'X,Y,Z OFFSET FOR THE UTAH HAND IS MEASURED'
WRITE 6,*)'FROM THE CENTER END OF THE ROBOT WRIST PIN'
WRITE 6,*) 'THESE VALUES ARE MEASURED WITH RESPECT TO'
WRITE 6,*)' THE LAST COORDINATE SYSTEM OF THE MERLIN'
WRITE 6,327)XH,YH,ZH

327 FORMA (' CURRENT X,Y,Z OFFSET IS ',3F8.2,' INCHES')
WRITE(6,*)' ENTER HAND OFFSET X,Y,Z IN INCHES'
READ *XH,YH,ZH
GO(1,1,2,HANDNUM ACTIVE)) =XH
GO2,1,2,HANDNUM ACTIVE)) =YH
GO(3,1,2 HANDNUM (ACTIVE)) =Z
WRITE(6,
GO TO 157

C REPOSITION ROBOT
C
C XP,YP,ZP ROBOT POSITIONING VALUES
C

ELSE IF (SET .EQ. 7) THEN
WRITE (,)'ENTER REPOSITION POINT OF MERLIN ROBOT'
WRITE 6,*)'POSITIVE X IS TO THE RIGHT'
WRITE 6,*)'POSITIVE Y IS UP'
WRITE 6,* 'POSITIVE Z IS OUT OF THE SCREEN'
WRITE 6,* 'THE ORIGIN IS THE LOWER,BACK,LEFT CORNER OF ROOM'
WRITE(6,* 'THE OLD X,Y,Z POSITION IS
WRITE 6,347)GO(,1,2,MERLNUM(ACTIVE)) ,GO (2,1,2,
s MERLNUM(ACTIVE)),GO(3,1,2,IERLNUM(ACTIVE))

347 FORIAT(3F8.2,' INCHES')
VRITE(6,* 'ENTER PLACEMENT OF BOTTOM CENTER OF ROBOT-',

S "X,Y,Z IN INCHES'
READ*,XP,YP,ZP
GO(1,1,2,MERLNUM ACTIVE) =XP
GO(2,1,2,MERLNUM ACTIVE) =YP
GO(3,1,2,MERLNUM(ACTIVE) =ZP
WRITE (I*
WRITE(6,* 'THE BASE OF THE ROBOT MAY BE ROTATED.'
WRITE (,* 'THE CURRENT ROTATION IN DEGREES IS'
WRITE(6,* GO(2,2,2,XERLNUM(ACTIVE))*1SO/PI,' DEGREES'

152

WRITE(6,*)'ENTER BASE ROTATION IN DEGREES'
READ*,N
GO(2,2,2,IERLNUI(ACTIVE))=N/180*PI
GOTO 157

C CHANGE ACTIVE ROBOT
ELSE IF (SET .Eq. 8) THEN
IF (ACTIVE .Eq. 1) THEN

ACTIVE = 2
ELSE

ACTIVE = 1
END IF
WRITE(6,*)'ACTIVE ROBOT IS ',ACTIVE
WRITE (6,*)
GOTO 157

C RETURN
ELSE IF (SET .EQ. 9) THEN

GOTO 143
C REDRAW

ELSE IF (SET .EQ. 0) THEN
GOTO 587

C QUIT
ELSE IF (SET .Eq. 10) THEN

GOTO 656
ELSE

GO TO 157
END IF

CC
C EXECUTE MENU
C
C EXECUTE MENU SELECTION VARIABLE
C

ELSE IF (OPTION .Eq. 2) THEN
374 WRITE 6,* 'MOVE ROBOT INDIVIDUAL JOINTS, INPUT - 1'

WRITE 6,* 'MOVE INDIVIDUAL FINGER JOINTS, INPUT - 2'
WRITE 6,* 'SAVE THIS VIEW. INPUT - 3'
WRITE 6,* 'DRAW ROBOT FROM SAVED DATA FILE,INPUT - 4'
WRITE 6,* 'MOVE ROBOT TIP POINT TO POINT, INPUT - 5'
WRITE 6,* 'MOVE ROBOT-ALL JOINTS IN STEPS, INPUT - 6'
WRITE (6,* 'RETURN TO MAIN MENU, INPUT - 9'
WRITE (6,* 'DRAW ROBOT, INPUT - 0'
WRITE(6,* 'TO QUIT, INPUT -10'
READ*,EXECUTE
WRITE (6,*)

cccC
C MOVE ROBOT
C
C C DEFINES ACTIVE LINK NUMBERS
C
C LIMITS DEFINES THE LIMITS OF EACH JOINT IN DEGREES
C

DATA C/4,5,7,8,9,10/
DATA LIMITS/ 147,-236,-236,-360,-90,-360,147,56,56,360,90,360/
IF (EXECUTE .EQ. 1) THEN

395 WRITE(6,*)'CHOOSE JOINT FOR CHANGE'

153

WRITE 6,* 'WAIST - 1'
WRITE 6,* 'SHOULDER - 2'
WRITE 6,* 'ELBOW - 3'
WRITE 6,* 'WRIST ROLL - 4'
WRITE 6,* 'WRIST PITCH - 5'
WRITE 6,* 'HAND ROLL - 6'
WRITE 6,* 'TO EXIT - O'

READ , A
IF (A .EQ. 0) THEN

GO TO 374
ELSE

ANG = GO(3,2,C(A),MERLNUM(ACTIVE))*180/PI
408 WRITE(6,409) ANG
409 FORMAT(' OLD VALUE ',F8.2,' DEGREES')

WRITE(6,*)' INPUT - NEW VALUE IN DEGREES'
READ*,D
IF ((D .LT. LIMITS(A,)) .OR.

$ (D .GT. LIMITS(A,2))) THEN
WRITE(6,415) LIMITS (A,1),LIIITS(A,2)

415 FORMAT(' ANGLE MUST BE WETEEN ,
$ F8.2,' AND ',F8.2,' DEGREES')

GO TO 408
END IF
GO(3,2,C(A),XERLNUM(ACTIVE)) = D*PI/180
GO TO 395

END IF
CCCCCcCCCCCCCcCCcccCCCCcCCCCcCCccCCCCCcCCCCCCCcCCCCCCCCcCCCCCCcCCC
C MOVE FINGERS
C
C CF IS THE SYSTEM VARIABLE
C
C AF IS THE SYSTEM COUNTER VARIABLE
C
C BF IS THE LINK VARIABLE
C

ELSE IF (EXECUTE .EQ. 2) THEN
432 WRITE 6, *

WRITE 6,* 'CHOOSE JOINT FOR CHANGE'
WRITE 6,* 'OTH FINGER - 1'
WRITE 6,* '1ST FINGER - 2'
WRITE 6,* '2ND FINGER - 3'
WRITE 6,* 'THIRD - 4'
WRITE(6,*) 'TO EXIT - O'

READ *, AF
WRITE(6,*)
DO 443 I=1,4

CF(I)=HANDNUM(ACTIVE) + I
443 CONTINUE

CC
C CF FINGER JOINT VARIABLE

IF (AF .EQ. 0) THEN
G0 TO 374

ELSE
450 A = CF(AF)

154

WRITE(6* 'CHOOS POSITION FOR CHANGE'
WRITE 6,)'ST JOINT - 1'
WRITE 6,*) '2ND JOINT - 2'
WRITE 6,* '3RD JOINT - 3'
WRITE 6,*) '4TH JOINT - 4'
WRITE 6,*, 0T EXIT - 0'
READ i -

END IF
CC

IF (BF EQ. 0) THEN
0O TO 432

ELSE
BF =BF+1
WRITE (6,*)
WRITE (6,466) (GO (3,2,BF,A))*180/PI

466 FORMIT(OLD VALUE ',F8.2,' DEGREES'
WRITE(6,*)' INPUT - NEW VALUE IN DEGREES'
READ;* D
GO (3,2,BF.A) = D*PI/180
WR TE(6,*)
GO TO 450

END IF
CC CCCCCCCCCCCCCC CCCCCCCC CCCCCCCCCCCC CCCCCCCCC CCCCCC CCCCC CCC CCCCCCCCC
C SAVE VIEW
C STORES THE VARIABLE LINK PARAMETERS IN AN OUTPUT FILE
C

ELSE IF (EXECUTE .EQ. 3) THEN
9PNUI- IE'AEDTTTS'E'
VRlTi(8,*) X,YZ,ZPOINT,MAG,FOCUS
DO 484 Izl,ROBNUI

DO 484 J~l,LlNKNUM (ROBNUI)
WRITE8 (,)GO(L,1,JI ,L=1,3)
WRITE (8,*) GO (L,2,JI ,L=,3)

484 CONTINUE
CLOSE(UNII2 8)
00 TO 374

C C CCCC CCCCC CCC CCCCCCCCC CCCC cccCCC CCCCC C CCCC CCCCCCCC CCC CCCCCCCCCCCCCC
ELSE IF (EXECUTE .EQ. 4) THEN

C DRAW FROM THE LAST SAVED VIEW
C CALLS THE VARIABLE LITNK VALUES FROM AN OUTFILE AND DRAWS THE ROBOT

OPEN (UNIT.-8,FILL-'SAVE.DAT',STATUS=9OLD')
READ (8, *) X,Y,Z,ZPOINT,IAG,FOCUS
DO 498 lz1,ROBNUl

DO 498 J=1,LINKNUM(ROBNUM)
READ (8, (GO(L,1,I)J ,L-1,3)
READ (8,* (GO (L,2,J,I) ,Lz,3)

498 CONTINUE
INIT =2
GO TO 199

502 INIT =0
CLOSER(NITzM)
GO TO 587

CCCCCCCCCCCCCCCCCCCICC
ELSE IF (EXECUTE .EQ. 5) THEN

155

C MOVE TO POINT
C
C B STORAGE OF JOINT ANGLES
C
C KINNUE PARAMETER PASSED IN CALL INKIN
C KINNIJM=1 (LEFT HAND) ,KINNUI=2 (RIGHT HAND)
C
C INKIN PROVIDES TIE ANGLES TO DRAW TO A CERTAIN POINT

CALL INKIN(B ,[INNUM)
DO 518 I=1,6

GO (3,2,C(I) ,NERLNUM(ACTIVE))=B(I)/180*PI
518 CONTINUE

GO TO 587
cCCCCCCCCCCcCCcCCC
C

ELSE IF (EXECUTE .EQ. 6) THEN
C MOVE BY ANGLES
C
C NUN NUMBER READING VARIABLE
C
C STEPS NUMBER OF INCREMENTS DURING MOTION
C
C ERASE LOGICAL - IS SCREEN ERASED BETWEEN VIEWS
C
C REPEAT LOGICAL FOR INTERNAL MEMORY CONCERNING DRAWING SETUP
C

533 WRITE(6,*)~'INPUT THE SIX ANGLES,
$ WAIST ,SH ULDER.,ELBOW,WRISTROLL,WRISTPITCI,HANDROLL)'
WRITE (6,*)9CURRENT ANGLES IN DEGREES ARE'
WRITE (6,36)(GO(3,2,C(I),MERLNUM(ACTIVE))*180/PI,I=1,6)

36 FORIAT (6F7.1)
READ 6,*j (M2I,1) ,I=1,6)
WRITE (6,) 'DO YOU WANT THE SCREEN ERASED BETWEEN STEPS'
WRITE (69*) 'IF YES INPUT 1'
WRITE (6,*) 'IF NO INPUT 0'
READ* , NUM
IF (NUN .E.1 THEN

ERASE = .TiUE.
ELSE

ERASE = .FALSE.
END IF
DO 556 I=196

IF ((M2(I,1) ALT. LIMITS 1,1)) .OR.
S (M12(1,1) .GT. LINMI ,2)) H

WRITE(6 ,552) I,LIMITS (I,) LINITS(I,2)
552 FORMAT('ANGLE- ',12,9 MUST BE BETWEEN '

$ F7.1,9 AND 9,F7.1,' DEGREES')
GO TO 533

END IF
556 CONTINUE

DO 560 I=1 6
M2 (1,1 =M2 (I,1)/180*PI
Ml (1,1) =GO (3,2,C(I),MERLNUM(ACTIVE))

560 CONTINUE

C 11 IS THE CURRENT SET OF ANGLES, 12 IS THE FINAL SET (TO BE INPUT
C BY USER), 13 IS RETURNED FROM GENANG AND CONTAINS THE EQUALLY
C SPACED INCREMENTAL SET OF STEP NUMBER OF ANGLES.
C

CALL GENANG(11,12,6,1,13,STEPS)
DO 573 J=I,STEPS

IF(J .EQ. STEPS) THEN
REPEAT = .FALSE.
ELSE
REPEAT = .TRUE.

END IF
DO 570 1=1,6

GO(3,2,C(I),MERLNUM(ACTIVE))=M3(I,1,J)
570 CONTINUE

GOTO 587
572 CONTINUE
573 CONTINUE

GO TO 374
cccC
C RETURN TO MAIN

ELSE IF (EXECUTE .EQ. 9) THEN
GOTO 143

CCC
C REDRAW
C
C XD STORAGE OF TWO DIMENSIONAL DRAWING CORNER POINTS
C
C COUNT COUNTER FOR LINK DRAVING FRAMES
C

ELSE IF (EXECUTE .EQ. 0) THEN
587 CALL TRANSFILL(GO,Tk,i,LINKNUM(1),1)

IF (DRAV(1) TRUE.) THENCALL XDFiLL(XO,XD,TR,LINKNUM I),l,

s FOCUS,NAG,COUNT,ZPOINT)
END IF

C THE TRANSFORMATION MATRIX OF THE LAST LINK ON THE MERLIN MUST BE
C ATTACHED TO THE FIRST TRANSFORMATION MATRIX ON THE HAND, AND THE
C FINGERS MUST BE ATTACHED TO THE HAND

DO 592 L = 2,3
IF (DRAW(L) .EQV. .TRUE.) THEN

CALL ADD ON(GO,TR,LINKNUM,L,RECEIVE)
CALL TRANSFILL(GO,TR,2,LINKNUM(L) L)
CALL XDFILL(XO,XD,TR,LINKNUM(L),L,

E FOCUS,MAG,COUNT,ZPOINT)
END IF

592 CONTINUE
DO 598 N = 4,5
IF (DRAV(N) .EQV. .TRUE.) THEN

DO 594 L=HANDNUM(N-3), HANDNUI(N-3)+4)
CALL ADD ON(GO,TR, INKNUM,L,RECEIVE)
CALL TRANSFILL(GO,TR,2,LINKNUM(L) ,L)
CALL XDFILL(XO,XDTR,LINKNUM(L),L,

s FOCUS,IAG,COUNT,ZPOINT)
594 CONTINUE

157

END IF
598 CONTINUE
604 CONTINUE

C
C IF THERE IS ONLY ONE VIEW - DRAW VIEW
C

IF (REPEAT .EQV. .FALSE.) THEN
CALL DRAWBOT(XD,IONITOR,COUNT)
COUNT = 0
ELSE

C
C IF MORE THAN ONE VIEW, DOES THE USER WANT TO ERASE
C BETWEEN VIEWS? IF TO BE ERASED SET FLAG.(-999)
C ADVANCE COUNT.
C

IF (ERASE .EqV. .TRUE.) THEN
COUNT = COUNT + 1

ENDX (1,1,COUNT) = -999
END IF

C
C RETURN TO SECTION OF PROGRAM FROM WHICH REDRAW WAS CALLED
C

IF (OPTION .Eq. 1) THEN
GO TO 157
ELSE IF (OPTION .Eq. 2) THEN

IF (EXECUTE .Eq. 6) THEN
GO TO 572

ELSE
GO TO 374

END IF
ELSE
GO TO 143

END IF
cccC
C qUIT

ELSE IF (EXECUTE .Eq. 10) THEN
GOTO 656

C
CC
C RETURN TO EXECUTE MENU
C

ELSE
GO TO 374
END IF

cc
ELSE IF (OPTION .Eq. 0) THEN
GOTO 587

C qUIT
ELSE IF (OPTION .Eq. 10) THEN
GOTO 656
ELSE
GO TO 143
END IF

158

C END OPTION
656 CONTINUE

STOP
END

C END OF MAIN PROGRAM
CeCCCCCCCCCCCCCCCCCCCCCccccccccccceCCCCCCCCCCCCCCCCCCCCCCCCCCCeCCCCC
C
C TI STORES TD.ANSFORI MATRICES FOR ALL LINKS
C
C ADD ON LINKS THE TRANSFORITION MATRICES OF SYSTEMS
C

SUBROUTINE ADDON(GOTRsLINKNUR ROBNUMRECELVE)
REAL GO(3,2,10,91O)TR(4,4 1091~
INTEGER ROBNUl,LINKNUi (20 ,RCE1VE(20)
DO 15 J=114(2 RC

DO 15 I=1,4
TR(I ,J ,1 ,ROBNUN)=TR(I ,J ,LINKNUM(RECEIVE(ROBNUM)) ,RECEIVE

15 $CONTINUE (RflBNUM))
CALL TRANSFILL(GO ,TR,2 ,LINKNUM(RflBNUM) ,ROBNUM)
RETURN
END

ccceCCCCCC
C
C TRANSFILL FILLS TRANSFORIATIN MATRIX
C

SUBROUTINE TIANSFILL (GO, TR,BEG, END, 1)
REAL 00(3,2,10,14) ,TR(44 4,10,14)
INTEGER BEGENDRZPO INT,MIJNITORf
DO 29 I=BEG,END

TR (1,1,I,1) =COS(Gfl(3 ,2,,R)) *CIS (Ga(2,2,1,)
TI (1,2,1,1) =- SINGfl(3,2,I, R)*CO (2 1,
TI (1,3,1,) =SIN(0(2,2 1,1)(22,

S SINIGO(112MV1~+CS(NG (3 2,I,1)COS(G I 22 I))
TR(2,4,I R =-GO (,,))4I(22 R)

TING 3 1,R=CUS(Gt Oj(1,2,I2ft))*CO(O S(II))k)
TR 3241R =GO(3,1,II)
TI 4,1,1,1 =0CSGC,,,)*I(O22IR)

TI 4,2, 1,2, =0+I(O3,,,)*I(G(,,)

I 431I,R =0
Tit 4,4,1,1 =1

29 CONTIN E
CALL TRANSFORM(TR,1,END,R)
RETURN
END

159

CCCcCcCCCCcccCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCcccCCcCCCCCCCCCCCCcc
C
C TRANSFORM CALCULATES THE TRANSFORMATION MATRIX BY MATRIX
C MUJLTIPLICATION
C

SUBROUTINE TRANSF ORIl(TI, SYS ,END ,)
DIMENSION TB(4,4,10,14),NATA(4,4) ,IATB(4,4) ,MATC(4,4)
REAL TR,ITA ,MATB ,ITC
INTEGER SYS,END,R
DO 23 I = (SYS+1),END

DO 15 K = 1,4
DO 15 J = 1,4

MATA (JK) T(JK, (I-i) ,R)
MAT (JK)= TR (JK,9R)

15 CONTINUE
CALL MULKATIAT(MATA ,IATB,lATC)
DO 22 [=1,4

DO 22 J=1,4
TI JKIR) = MATC(J,K)

22 CONTINUE
23 CONTINUE

RETURN
END

C
CC
C
C XDFILL FILLS THE XD ARRAY (8 X 2 X COUNT) WITH DRWING POINTS
C POSITIONS
C

SUBROUTINE XDFILL(XO,XD,TREND,R,FOCUS,MAG,COUNT,ZPOINT)
DIMENSION XO(8,3,10,14),TR(4410,14) ,MAT(4,4),
VEC4)CORD4,XD8,2,500),FOCUS(2)

REAL X0,TRINAT IVECCORD,X,YZXDTIXTIYZPOINT,FOCUS,MAG
INTEGER END,R,COUNT
DO 43 L=1,END

COUNT = COUNT + 1
DO 42 I=1,8

DO 18 K=1,4
DO 18 J=1,4

MAT(JK) = TB.(JKLR)
18 CONTINUE

DO 21 J=1,3

21 CONTIN ~~

C VEC(4)=1.O
C MULMATVEC IS A MATRIX OPERATION OF MULTIPLYING THE VECTOR BY TIE
C TRANSFORMATION MATRIX
C

C CALL MULIATVEC (MAT, VEC ,CORD)

C THE SCREEN VIEW ALLOWS A 20 DEGREE VIEWING TUNNEL
C THE FOLLOWING CODE PLACES THE DRAWING POINTS IN THEIR RESPECTIVE
C PLACES IN THE SCREEN VIEW. IF THE POINTS LIE OUTSIDE THE

160

C 20 DEGREE TUNNEL, THEY WILL NOT BE DISPLAYED
C

I = CORD (1) - FOCUS('I
Y = CORD (2) - FOCUS(2)
Z = ZPOINT -CORD(3)
TII=ATAN (1/
THY=ATAN (YZ
XD (I1,1COUT 50*TII/.349*NAG
XI 2CUT 50*THY/.349*NAG

42 CONTI NUE
43 CONTINUE

RETURN
END

CCCCcccccccCCCcCCCCCCCCCCcCCcccCcCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCcc
C
C MULIATVEC MULTIPLIES A 4X4 MATRIX WITH A 41 VECTOR OUTPUT C(4I4)
C

SUBROUTINE MULMATVEC (A, B,C)
REAL A (4,4),B(4),C(4),SUN
DO 14 I 1,4

SUN 0
DO 12 J = 1,4

Sulu= A(I,J)*B(J) + SUM
12 CONTINUE

14 CONTIN E~ U
RETURN
END

CC
C
C MULMATMAT MULTIPLIES TWO 4X4 MATRICES, 'WITH OUTPUT C(4X4)
C

SUBROUTINE NULMATMAT A:B,C
REAL A (4,4),B(4,4),C 44,U
DO 16 I= 1,4

DO 15 J = 1,4
SUN = 0
DO 13 K = 1,4

SUM = A(IK)*B(KJ) + SUM
13 CONTINUE

C (I,J) = SUN
15 CONTINUE
16 CONTINUE

RETURN
END

CC
C
C SUBROUTINE GENANG GENERATES AN ARRAY OF ANGLES.
C GIVEN AN INITIAL SET OF ANGLES, A FINAL SET OF ANGLES, AND THE
C NUMBER OF STEPS, IT COMPUTES EQUALLY SPACED INTERIEDIATE ANGLES,
C GOING FROM THE INITIAL TO THE FINAL ANGLE.
C

SUBROUTINE GENANG(M1 ,M2,N1,N2,M3,STEPS)
REAL 11(6,4),12(6,4)9113(6,4,200),DELM(6,4)

161

INTEGER Ni ,N2 ,STEPS
WRITE(6 *) INPUT - NUMBER OF STEPS
READ(6,4) STEPS
DO 11 J=1,N2

DO 11 I=1,N1
DELI(I,J)=(12(I,J)-Kl(IJ))/STEPS

11 CONTINUE
DO 15 K=1,STEPS

DO 15 J-1,N2
DO 15 I=1,N1

15 ONTNUE13(I,J ,K)=KI(I,J)+DELI(I,J)*K

RETURN
END

CCCCCCCCCCCCCCCCcccccCCCCcCCcCCCCCCCCCccccccccccCCCCcCcCCCCCCCc
C
C SUBROUTINE DRAWBOT CONTAINS THE DISSPLA SETUP CALLS.
C IT RECEIVES THE TWO DIMENSIONAL SCREEN DRAING POINTS.
C EACH SET OF EIGHT POINTS OF A LINK ARE CONNECTED IN A CERTAIN
C SEQUENCE TO REPRESENT A SIX SIDED CLOSED OBJECT (THE LINK).
C

SUBROUTINE DRAWBOT (ID ,ONITOR,COUNT)
REAL XD(8,2,1000) ,X(16),Y((16)
INTEGER MONITOR,B(16) ,COUNT
DATA B/1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3/

C SYSTEM MODULE CALL

IF (MONITOR .EQ. 1) THEN
CALL TEKALL(4010,960,O,1,O)

ELSE IF (MONITOR .EQ. 2) THEN

ELECALL TK41(4107)

CALL REGIS(3,O)
ENDIF

C
C THE FOLLOWING ARE DISSPLA DRAING COMINDS
C

CALL BLOWUP(1.O)
CALL NOCHEK
CALL PAGE(11.O,11.O)
CALL AREA2D(10.5,1O.5,
CALL GRAF(-50.O,'SCALE '50.0,-50.0,9SCALE',50.0)
CALL INTAXS
CALL SCLPIC(01)
DO 51 I=1,COUNT

C
C IF FLAG (XD(1,1,COUNT)=-999) ERASE SCREEN AND DRAW NEXT VIEW
C

IF (XD(1,1,I) .EQ. -999) THEN
CALL ENDPL(Q)
CALL PAGE(11.O,11.O)
CALL AREA2D(1O.5,910.519
CALL GRAF(-50.O,'SCAL '50.09-50.0,9SCMLE150.0)

162

CALL INTAiS
CALL SCLPIC(.01)

ELSE
DO 45 J=1,16

C
C FILL THE DRAVING ARRAY IN A SEQUENCE THAT RESULTS IN DRAWING
C A CUBE VHEN THE CONSECUTIVE POINTS ARE CONNECTED WITH LINES
C

Y() =XD (BJ ,1,)

45 CONTINUE
C
C DRAW THE LINK.
C

CALL CURVE(X,Y,16,1)
ENDIF

51 CONTINUE
CALL ENDPL(O)
CALL DONEPL
RETUAN
END

CC

PROGRAM INKIN.FOR

CCC
C MERLIN ROBOT INVERSE KINEMATICS PROGRAM
CCC

SUBROUTINE INKIN(ANG,HIAND)
C DEFINE REAL k INTEGER VALUES

INTEGER FLAG,VSPACE,HAND,SET
REAL T(4,4) ,T1,T2P1,T2P2,T3P,T3N,T4A,T4B,T5A,T5B,T6A,
ST6B,A2,D2,D3,D4,D6,PI,VP,S1,S2,EP,EN,WR1,WR2,WR3,VR4,
SPI ,WP2,WP3,WP4,HR1,HR2,HR3,HR4,DUM,Z(4,7),TPP,TPN,ANG(1,6)

1 PRINT *,' I
C VALUE OF CONSTANTS

PI = 3.141592653589792
C SETUP KINEMATIC PARAMETERS FOR THE MERLIN 6500 50 LB. ROBOT
C
C A2 IS THE DISTANCE BETWEEN SHOULDER JOINT AND ELBOW JOINT

A2 = 17.38
C D4 IS THE DISTANCE FROM ELBOW JOINT TO WRIST PIN

D4 = 17.24
C D6 IS THE DISTANCE FROM WRIST PIN TO TIP OF THE END-EFFECTOR

D6 = 3.5
C SET UP D2 AND D3. D2 IS THE DISTANCE FROM THE WAIST VERTICAL
C AXIS TO THE CENTER OF THE UPPER ARM. D3 IS THE DISTANCE FROM
C THE CENTER OF THE UPPER ARM TO THE CENTER OF THE LOWER ARM.

v DfuR TW A ND .
IF(HAND .EQ. 1) THEN

163

D2 = 19.00
D3 = -7.00

ELSE
C SET UP D2 AND D3 FOR THE RIGHT HAND.

D2 = -19.00
D3 = 7.00

ENDIF
C INITIALIZE ALL GLOBAL VARIABLES (RETURNED VARIABLES ARE
C INITIALIZED INSIDE THE SUBROUTINE ONLY)

VP = 0.0
SI = 0.0
S2 = 0.0
EP = 0.0
EN = 0.0
VRI = 0.0
WR2 = 0.0
WR3 = 0.0
WR4 = 0.0
YPI = 0.0
VP2 = 0.0
VP3 = 0.0
WP4 = 0.0
HR1 = 0.0
HR2 = 0.0
HR3 = 0.0
HR4 = 0.0
DUM = 0.0
T2PI = 0.0
T2P2 = 0.0

C INITIALIZE [Z J MATRIX
C THE FIRST COLUMN OF THE MATRIX IS A FLAG FOR VALIDITY OF THE
C SET OF JOINT ANGLES BEING COMPUTED BEING ALL WITHIN THEIR RANGES.
C THE REMAINING 4 X 6 MATRIX IS USED TO STORE THE RESULTS OF
C THE COMPUTATIONS IN THE ORDER -- WAIST, SHOULDER, ELBOW,
C WRIST ROLL, WRIST PITCH, HAND ROLL

DO 2 I = 1,4
DO 2 J = 1,7Z(IJ) = 0,0

2 CONTINUE
C ENTER POSITION AND ORIENTATION MATRIX FROM DATAFILE OR SCREEN
3 CALL MATENTER(T,D6)
C FLAG SET UP FOR END POSITION IN/OUT OF VORKSPACE
C WSPACE = 0 IF THE END-EFFECTOR IS INSIDE THE VORKSPACE
C WSPACE = 1 IF THE END-EFFECTOR IS OUTSIDE THE VORKSPACE
C SET DEFAULT WSPACE FLAG = 0

WSPACE = 0
C COMPUTE WAIST ANGLES T1.
C IN THE CALL STATEMENT BELOW, T IS THE 4 X 4 POSITION AND
C ORIENTATION WORKSPACE, Ti IS THE COMPUTED WAIST ANGLE.

CALL WAIST(T,T1,D2,D3,VSPACE)
C IF PnSITION DESIRED AS END-POINT IS OUTSIDE THE WORKSPACE
C GET A NEW SET OF ENDPOINTS FROM THE USER.

IF(WSPACE .EQ. 1) THEN
1OTO 3

164

ENDIF
C CONVERT COKPFIED WAIST ANGLE FROM RADIANS TO DEGREES.
C A DUMMY IS USED HERE (DUE), SINCE ONLY ONE VAIST ANGLE EXISTS.

CALL IDEG(TI,O.O,VP,DUM)
C STORE RESULTS OF WAIST IN [Z] MATRIX (SECOND COLUMN)

DO 5 I = 1,4

5 CONTINU =
C RESET THE VSPACE FLAG TO 0 FOR THE ELBOW COMPUTATIONS.

WSPACE = 0
C COMPUTE ELBOW ANGLES T3P,T3N

CALL ELBOW(T,T3P,T3N,A2,D2,D3,D4,WSPACE)
C IF USER DEFINED END POSITION AND ORIENTATION IS OUTSIDE
C THE WORKSPACE, RE-ENTRY OF MATRIX

IF(VSPACE .EQ. 1) THEN
GOTO 3

ENDIF
C CONVERT ELBOW ANGLES FROM RADIANS TO DEGREES

CALL RADEG(T3P,T3N,EP,EN)
C STORE RESULTS OF ELBOW ANGLE SOLUTION IN THE FOURTH COLUMN
C OF MATRIX [Z]

DO 6 I = 1,2
Z(I,4) = EP
Z(I+2,4) = EN

6 CONTINUE
C COMPUTE (SHOULDER + ELBOV) ANGLES TPP,TPN

CALL SHOULDER(T,A2,D4,TI,T3P,T3N,TPP,TPN)
C COMPUTE SHOULDER ANGLES T2P1,T2P2

T2P1 = TPP - T3P
T2P2 = TPN - T3N

C CONVERT SHOULDER ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T2PI,T2P2,SI,S2)

C STORE RESULTS OF SHOULDER ANGLES IN [Z] MATRIX (THIRD COLUMN)
DO 7 I = 1,2

Z(1,3) = Si
Z(I+2,3) = S2

7 CONTINUE
C COMPUTE WRIST ROLL ANGLES

CALL WROLL(TT4P1,T4P2,T1,TPP,TPN)
C CONVERT WRIST ROLL ANGLES FROM RADIANS TO DEGREES

CALL RADEG(T4P1,T4P2,WR1,WR2)
C COMPUTE 'WRIST FLIPPED' SOLUTIONS

WR3 = WRi + 180.0
WR4 = WR2 + 180.0

C STORE RESULTS OF WRIST ROLL IN [Z] MATRIX (FIFTH COLUMN)
Z(1:5 = WR1
Z(2 = VR3
Z(3,S = WR2
Z(4,5) = WR4

C COMPUTE IRIST PITCH ANGLES
CALL WPITCH(T,T5P1,T5P2,T1,TPP,TPN,T4P1,T4P2)

C CONVERT WRIST PITCH ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T5Pl,T5P2,PI1,WP2)

165

C COMPUTE 'REVERSED PITCH' SOLUTIONS
VP3 = - VP1
VP4 = - VP2

C STORE RESULTS IN [Z] MATRIX - SIXTH COLUMN
Z(1,6) = wP1
Z 2,6) = VP3
Z(3,6) = P2
Z(4,6) = VP4

C COMPUTE HAND ROLL
CALL HRfOLL(T,T6P1,T6P2,T1,TPP,TPN,T4P1,T4P2,T5P1,T5P2)

C CONVERT HAND ROLL ANGLES FROM RADIANS TO DEGREES
CALL RADEG(T6P1,T6P2,HR1,HR2)

C COMPUTE 'HAND FLIPPED' SOLUTIONS FOR HAND ROLL
HR3 = HR1 + 180.0
HR4 = HR2 + 180.0

C STORE RESULTS IN THE [Z] MATRIX (SEVENTH COLUMN)
Z 1,7) = HR1
Z(2,7 = HR3
ZN3,7R HR2
Z14,7) =HR4

C NORMALIZE THE COMPUTED RESULTS.
CALL NORiAL(Z)

C CHECK FOR VALIDITY OF EACH SOLUTION SET.
CALL VALID(Z)

C PRINT OUT VALID RESULTSI(VALID IF WITHIN JOINT ANGLE RANGE)
PRINT *,' THE VALID INVERSE KINEMATICS RESULTS ARE
DO 51 1 = 1,4

IF(Z(I,1) .EQ. 0.0) THEN
VRITE(5,:*) 'THE VALID SOLUTION NUMBER IS ',IWRITE(5,) (Z(IJ),J=2,7)

ENDIF
51 CONTINUE
C SET DEFAULT FOR USER CHOSEN SET OF RESULTS = 1

SET = 1
C QUERY USER FOR CHOICE OF SET OF RESULTS FROM VALID SET.

PRINT *,' ENTER YOUR CHOICE OF ANGLES (AS A SET)
PRINT *,' FROM THE DIFFERENT SETS ABOV
READ(5,52) SET

52 FORMAT (I)
C COPY CHOSEN SET OF RESULTS TO VECTOR ANG(1,6)

DO 53 J = 1,6
ANG(1,J) = Z(SET,J+I)

53 CONTINUE
RETURN
END

CC
C POSITION AND ORIENTATION DATA ENTRY ROUTINE

SUBROUTINE IATENTER(A,D6)
INTEGER IATCH,TIP
REAL A(4,4),PX1,PY1,PZ1,PX,PYPZD6

C INITIALIZE LOCAL VARIABLES
PX1 = 0.0
PY1 = 0.0
PZ1 = 0.0

166

PX = 0.0
PY = 0.0
PZ = 0.0

C INITIALIZE MATRIX [A]
100 DO 101 1 = 1,4

DO 101 J = 1,4A(g,J) = 0.0
101 CONTINUE
C DATA ENTRY OF POSITION AND ORIENTATION MATRIX

DO 102 I = 1,3
DO 102 J = 1,4

PRINT *,' ENTER TRANSFORM MATRIX ENTRY',I,JREAD(5,4) ICI,J)

102 CONTINUE
C ADJUST ROW 4 ENTRIES TO PREVENT ENTRY ERRORi Ab(4,1) = 0.0

A:(4,2) 0.0
A (4,3) 0.0
A (4,4) 1.0

C PRINT OUT MATRIX TO SCREEN
PRINT *,' '
PRINT *,' THIS IS THE ENTERED TRANSFORM MATRIX.
CALL AOUT(A)
PRINT IF YOU WANT TO CHANGE THE MATRIX, ENTER 0
PRINT * IF POSITION ENTRIES REFER TO THE TIP OF THE '
PRINT * ' END EFFECTOR ENTER I '
PRINT * ' IF POSITION ENTRIES ARE WITH RESPECT TO THE '
PRINT W' WRIST PIN ---------- ENTER 2
READ(5,104) TIP

104 FORMAT(I)
C ALLOW FOR CHANGE OF TRANSFORM MATRIX ENTRIES

IF(TIP .EQ. 0) THEN
GOTO 100

C ADJUST END EFFECTOR POSITION TO WRIST PIN IF POSITION GIVEN IS
C AT THE TIP OF THE END-EFFECTOR

ELSEIF(TIP .EQ. 1) THEN
C SETUP POSITION PARAMETERS TO END-EFFECTOR TIP

PX A(1,4)
PYl = A(2,4)
PZl A (3,4)

C ADJUST POSIT ION PARAMETERS TO WRIST PIN
PX PX1 - D6 * A(1,3)
PY = PYI - D6 * A(2,3)
PZ = PZI - D6 * A(3,3)

C RESET POSITION PARAMETERS IN [A] MATRIX TO WRIST PIN
A11,4) = PX
A 2,4 = PY
A 3,4 = PZ

END F
RETURN
END

CCC

167

C OUTPUT OF MATRIX TO SCREEN
SUBROUTINE AOUT(M)
REAL 1(4,4)
INTEGER I,J
DO 1001 1 = 1,4
VRITE(5,*) (M(IJ),J=1,4)

1001 CONTINUE
RETURN
END

CCCCCCCCCCCCCCCCCcCCcCCCCCCCC
C WAIST kNGLE COMPUTATION

SUBROUTINE VAIST(A,W1,X2,X3,SPACE)
REAL A(4,4),W1,X2,X3,RHO,PX,PYTERM1,TERM2,T2,X23
INTEGER I,J,SPACE

C INITIALIZATION OF LOCAL VARIABLES
VI = 0.0
TERMI = 0.0
TERM2 = 0.0
X23 0.0
T2 = 0.0

C SET UP OF POSITION PARAMETERS
PX = A(1,4)
PY = A(2,4)

C COMPUTE F IRST TERM FOR WAIST ANGLE SOLUTION
TERMI = ATAN2(PY,PX)

C COMPUTE TERM2
X23 = (X2 + X3)
PXSq = PX *PX
PYsq = PY * PY
PXPYSq : PXSQ + PYSQ
X23sq = X23 * X23

C IS USER-SPECIFIED POSITION INSIDE THE VORKSPACE ?
C SET VORKSPACE FLAG TO INSIDE VORKSPACE

SPACE = 0
IF (PXPYSQ .GT. X23SQ) THEN

C SPECI FIED POSITION IS INSIDE VORK-SPACE, SO COMPUTE SECOND TERM
GOTO 301

ELSE
C USER SPECIFIED POSITION IS OUTSIDE VORKSPACE.
C
C COMPUTE DIFFERENCE IN TERMS

ERROR = (ABS(PXPYSQ - X23Sq))
C IF THE COMPUTED ERROR < 0.0001, THEN COMPUTATIONAL ERROR
C COULD HAVE CAUSED THE POSITION TO LIE OUTSIDE THE VORKSPACE.

IF(ERROR .LT. 0.0001) THEN
C YES, COMPUTATIONAL ERROR OCCURED. COMPUTE T2, FOLLOWED BY
C THE SECOND TERM.

T2 = SQRT(ERROR)
GOTO 302

ELSE
C USER SPECIFIED POSITION IS DEIFINITELY OUT OF VORKSPACE

SPACE = 1
PRINT *,' OUTSIDE VORKSPACE
GOTO 303

168

ENDIF
ENDIF

301 T2 = SQRT(PXPYSQ - 123SQ)
302 TER2 = ATAN2(X23,T2)
C COMPUTE SOLUTION FOR WST ANGLE W1

Wl = TERI - TERM2
303 RETURN

END
CCCCCCCCcCCCCCCCCCCCCCCCCCCccCCCC CCCCCCCcCCCCCcCcCCcCCCcCCCCCcCCCC
C ELBOW ANGLE DETERMINATION ROUTINE

SUBROUTINE ELBOW(A,EP,EN,B2,12,13,14,SPACE)
INTEGER SPACE
REAL A(4,4),EP,EN,B2,12,X3,X4,KA,KB,123,T1,T2P,T2N

C INITIALIZE LOCAL VARIABLES
EP = 0.0
EN = 0.0
KA = 0.0
KB = 0.0
Ti = 0.0
T2P = 0.0
T2N = 0.0
123 = 0.0

C SET UP POSITION PARAMETERS OF TRANSFORM MATRIX
P1 : !(1, 4PY =A (2, 41

PZ A (3,4)
C COMPUTE FIRST TERN OF ARCTAN FUNCTION

X23 (12 + X3)
KA:- (PX * PX) - (PY * PY) - PZ*PZ
KB =(B2 * B2) + (X23 * X23) + X4 * 14
TI : (KA + KB) / (2.0 * B2 * X4)
T!SQ = TI *T1

C DETERMINE IF USER DEFINED POSITION IS OUTSIDE WORKSPACE
SPACE = 0

C POSITION IS INSIDE THE WORK-SPACE IF TISQ < 1.0
IFT1SQ .LE. 1.0) THEN

GOTO 401

ELSE
C USER DEFINED POSITION MAYBE OUTSIDE WORKSPACE
C THEREFORE, COMPUTE THE ERROR

ERROR z (ABS(I.0 - TISQ))
C CHECK TO SEE IF COMPUTATIONAL ERROR COULD HAVE CAUSED THE
C POSITION TO LIE OUTSIDE THE WORKSPACE

IF(ERROR .LT. 0.0001) THEN
12P = SQRT(ERROR)
GOTO 402

ELSE
C USER ENTERED POSITION IS OUTSIDE WORKSPACE

PRINT *,' OUTSIDE WORKSPACE
SPACE = 1
GOTO 403

ENDIF
ENDIF

C COMPUTE SECOND TERM OF ARCTAN FUNCTION

169

401 T2P = SQRT(1.0 - TlSQ)
402 T2N = - T2P
C COMPUTE THE TWO POSSIBLE SOLUTIONS FOR ELBOW ANGLE I.E. EP k EN

EP = ATAN2 (T1,T2P)
EN = ATAN2 (T1,T2N)

403 RETURN
END

CCocc
C SHOULDER + ELBOW ANGLE DETERMINATION ROUTINE

SUBROUTINE SHOULDER(A,B2,X4,WP,EP,ENAPP,APN)
INTEGER IJ
REAL A(4,4) ,B2 ,X4,WP,EP,EN,T1PP,T1PN,T2PP,T2PN,CIP,S1P
SC3P,C3N, 53P , 3N ,TIPPA ,T1PNA ,T2PPB ,T2PNB ,APP, APN

C INITIALIZE LOCAL VARIABLES
TIPP = 0.0
TOPN =0.0
T2PP = 0.0
T2PN = 0.0
TlPPA = 0.0
T1PNA = 0.0
TIPP = 0.0
TIPN =0.0
T2PPB = 0.0
T2PNB = 0.0
APP = 0.0
APN = 0.0

C SETUP OF POSITION PARAMETERS
P1=A (14)

PY = A (2,4)
PZ = A (3,4)

C COMPUTE C SINE AND SINE FUNCTION VALUES OF THE APPROPRIATE ANGLES
CIP = COS VP
SiP = SIN VP
C3P = COS EP
S3P = SIN EP
C3N = COS EN
S3N = SINI EN BEFRTTRSOFACA2FNTO

C COMPUTE ALL POS IL IS EM FACA2FNTO
C
C WAIST POSITIVE 4ELBOW POSITIVE (TIPP)

TlPPA = B2 C3P * PZ
TIPP = (((B2 * S3P) - X1)* ((CiP * PX) + (SiP * PY))) - TIPPA

C WAIST POSITIE ELBOW NEGATIVE (TiPN)
T1PNA =B2 4C3N * PZ
TOPN =(((B2 * S3%)-014) *(CP * PX) + (SiP * PY))) - TlPNA

C COMPUTE ALL POSSIBLE SCOND)TERMS OF ARCTAN2 FUNCTION
C
C WAIST POSITIVE, ELBOW POSITIVE (T2PP)

T*PB ()+SI * PY)))
T2PPB B2 *C3P * ((l P

C WAIST POSITh El ELBOW NEGATIVE (T2 PN)
T2PNB = (B2 * C3N) * (CiP* P1) +(P*P))
T2PN = (B2 * S3N) P- Alp* PZ + T2N

CCOMPUTE ALL FOUR POSSIBLE SOLUTI NS OF (THETA 2 + THETA 3)

170

APP = ATAN2 (T1PP,T2PP)
APN = ATAN2 (T1PN,T2PN)
RETURN
END

CCC
C WRIST ROLL INGLE DETERNINATION ROUTINE

SUBROUTINE WROLL (A,PPP,PPN,WP,T23PP ,T23PN)
INTEGER FPPP,FPPN
REAL A(4,4) ,PPP,PPN,WP,T23PP,T23PN,T1P,R13,R23,RL33,
$SP,C1PC23PPC23PN ,S -23PPS23PN, SNGCK

C INITIALIZE LOCAL VARIABLES
TIP = 0.0
T2PPP = 0.0
T2PPN = 0.0
PPP = 0.0
PPN = 0.0

C SET UP SINGULARITY CHECK CONDITION
SNGCI[= 0.005

C SET FLAGS TO NON-SINGULAR CASE
FPPP = 0
FPPN = 0

C SETUP EATRIX ORIENTATION PARIETERS
R13 = A(1,3)
R23 = A(2,3)
R33 = A (3,3)

C SETUP TRIG. FUNCTIONS
SIP = SN WP
CiP = COS(P
C23PP = C OS(T23PP)
S23PP = SIN (T23PP)
C23PN = COS (T23PN)
S23PN = SIN (T23PN)

C COIPUTE ALL FIRST TE lS OF ARCTAN2 FUNCTION
TIP =- (R13 * SIP))+(R23 * CP)

C COIPUTE ALL SECOND TERNS OIF ARCTAN2 FUNCTION
T2PPP = - (R13*C1P*C23PP) - (R23*SlP*C23PP) + (R33*S23PP)
T2PPN = - (R13*CIP*C23PN) - (R23*SlP*C23PN) + (R33*23N)

C CHECK FOR SINGULARITY CONDITIONS AT WRIST PITCH
IF((TIP ML. SNGCHK IAND. TIP .GT. - SNGCHK) .AND.
S T2PPP M L. SNGCHK .AND. T2PPP .GT- SNGCHK)) THEN

1p=
ENDIF
IF((T1P .LT. SNGCHK IAND. TiP .GT. -_SNGCHK) AIND.
$ (T2PPN ML. SNGCHK .AND. T2PPN .GT . -SNGCHK)) THEN

ENDIF
C SET WRIST ROLL TO 0.0 RADINS IF SINGULARITY DETECTED
C AT WRIST PITCH, ELSE COIPUTE WRIST ROLL. NOTE THAT THIS WILL
C CAUSE THE ROLL TO SHOW UP ONLY IN HAND ROLL ANGLE.
C SOLUTION # 1

IF(FPPP .EQ. 1) THEN
PPP = 0.0

ELSE
PPP = ATAN2(T1P,T2PPP)

171

ENDIF
C SOLUTION # 2

IF(FPPN .EQ. 1) THEN
PPN = 0.0

ELSE
PPN = ATAN2(TIP,T2PPN)

ENDIF
RETURN
END

CCCCCCCCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcccccccCCCCCCcCCCCCCcc
C WRIST PITCH DETERMINATION

SUBROUTINE VPITCH(A ,A5PI1 5P2 ,VP ,APP ,APN,V4P1 ,V4P2)
REAL A(4,4) ,A5P1,A5P2,VP,APP,APN,V4Pl,V4P2,

ST5A1PPPP ,T5A2PPPP ,T5A3PPPP ,T5APPPP ,T5AIPPNP ,T5A2PPNP,T5A3PPNP,
$T5APPNP ,T5B1PPPP ,T5B2PPPP ,T5B3PPPP ,T5BPPPP,T5B1PPNP,T5B2PPNP,
IT5B3PPNP ,T5BPPNP ,R13 ,R23 ,R33 ,CiP ,SIP, C23PP , 23PP,
$C23PN,S23PN,C4Pl,S4P1 ,C4P2,54P2

C INITIALIZE LOCAL VARIABLES TO 0.0
T5A1PPPP = 0.0
T5A2PPPP = 0.0
T5A3PPPP = 0.0
T5APPPP = 0.0
T5A1PPNP = 0.0
T5A2PPNP = 0.0
T5A3PPNP = 0.0
T5APPNP = 0.0
T5B1PPPP = 0.0
T5B2PPPP = 0.0
T5B3PPPP = 0.0
T5BPPPP = 0.0
T5BlPPNP = 0.0
T5B2PPNP = 0.0
T5B3PPNP = 0.0
T5BPPNP = 0.0
A5P1 = 0.0
15P2 = 0.0

C SETUP ORIENTATION PARAMETERS
R13 = A ,3
R23 = A:3
R33TR= AU C3 N

C SETUPTRGFUM N
CIP = COS VP)
sip = SIN(VP)
C23PP =COlS (PP
S23PP =SIN (PP
C23PN =COS APN
S23PN =SIN (APN
C4P1 COS IV4P1
S4P1 =SIN (VPi
C4P2 =COS (VP2
S4P2 =SIN (VP21

C COMPUTE FIRST TERM OF THE ARCTAN2 FUNCTIONS
T5A1PPPP = - (R13 * (CiP * C23PP * C4P1) + (Si P * 54P1jT5A2PPPP = - (R23 * ((SP * C23PP * C4P1 (CIP * S4P1))

172

T5A3PPPP = 133 * S23PP * C4P1
T5APPPP = T5A1PPPP + T5A2PPPP + T5A3PPPP
T51PPNP? = - (113 * (CIP * C23PN * C0P2) + (SIP * S4P2))
T5A2PPNP = - (R23 * (SIP * C23PN * C0P2) - (CiP * S4P2))
T5A3PPNP = R33 * S23PN * C4P2
T5APPNP = T5A1PPNP + T5A2PPNP + T5A3PPNP

C COIPUTE SECOND TERNS OF THE ARCTAN2 FUNCTIONS
T5BIPPPP = - (ClP *S23PP R 13)
T5B2PPPP =- (SIP *S23PP R 23)
T5B3PPPP = - (C23PP * 133)
T5BPPPP = T581PPPP + T5B21'PPP + T5B3PPPP
T5BIPPNP = - (Cii S 23PN R 13)
T5B2PPNP = - (SiP *S23PN *123)
T5B3PPNP = - (C23PN * R33)
T5BPPNP = T5BIPPNP + T5B2 NP + T5B3PPNP

C COIPUTE WRIST PITCH ANGLES USING ARCTAN2 FUNCTION
A5PI = ATAN2 (T5APPPP,T5BPPPP)
15P2 = ATAN2 (T5APPNP,T5BPPNP)
RETURN
END

CCC
C DETERNINATION OF HAND ROLL ANGLES

SUBROUTINE HROLL(A,A6PI1A6P2,VP,APP,APN,A4PI1A4P2,A5PI1A5P2)
INTEGER IJ
REAL A(4,4) ,A6P1,A6P2,VP,APPAPN,A4PlA4P2,A5PI1A5P2,

$PPPPPA 1,PPPPPA2, PPPPPA3 ,PPPPPA ,PPNPPA1, PPNPPA2 ,PPNPPA3 ,PPNPPA
$PPPPPB1 ,PPPPPB2 ,PPPPPB3 ,PPPPPB ,PPNPPB1 ,PPNPPB2,PPNPPB3 ,PPNPPB

C INITIALIZE LOCAL VARIBLES TO 0.0
PPPPPAI = 0.0
PPPPPA2 = 0.0
PPPPPA3 = 0.0
PPPPPA = 0.0
PPNPPA1 = 0.0
PPNPPA2 = 0.0
PPNPPA3 = 0.0
PPNPPA = 0.0
PPPPPB1 = 0.0
PPPPPB2 = 0.0
PPPPPB3 = 0.0
PPPPPB = 0.0
PPNPPB1 = 0.0
PPNPPB2 = 0.0
PPNPPB3 = 0.0
PPNPPB = 0.0

C INITIALIZ WRIST ROLL ANGLES TO 0.0
16P1 = 0.0
16P2 = 0.0

C SETUP ROTATION PARAIETERS
111 A (1,1
121 A (21)
R31 =A (3,1)

C SETUP UP TRIG. FUNCTIONS
CIP = COS (VP)
SIP = SIN(VP)

173

C23PP = COSAP
S23PP = SINAP
C23PN = COS APN
S23PN=SI P
C4P1 = COS A4P1
S4Pl = SIN A4Pl
C4P2 = COS k4P2
S4P2 = SIN A4P2
C5P1 = COS A5P1
S5P1 = SIN A5P1
C5P2 = COS A5P2
S5P2 = SIN 15P2

C COMPUTE THE FIRST ERIS FOR THE ARCTAN2 FUNCTION
PPPPPAI = il * (CIP *C23PP * S4P1) - (SiP * C4P1)
PPPPPA2 = R21 * SI5P* C23PP * S4P1) + (CiP * C4P1)
PPPPPA3 = 131 * (123PP * S4P1)
PPPPPA = - PPPPPA1 - PPPPP12 + PPPPPA3
PPNPPA1 = 111 * (CIP * C23PN * S4P2) - (SiP * C4P2)
PPNPPA2 = R21 * (SiP * C23PN * S4P2) + (CIP * C42))
PPNPPA3 = R31 * (S23PN * S4P2)
PPNPPA = - PPNPPAl - PPNPPA2 + PPNPPA3

C COMPUTE THE SECOND TERMS FOR THE ARCTAN2 FUNCTION
PPPPPB1 = li * (C5PI * ((CiP * C23PP * C4P1) + (SiP * S4P1))
$- (CIP S 23PP * S5PIj)
PPPPPB2 R 21 * (C5Pi ((SiP * C23PP * C4P1) - (CiP * 54P1))
$- (SIP S 23PP * "W C4I Cp1 (23P* 5)PPPPPB3 R 31 * ((S23P~*CP 51 C3P*SP)
PPPPPB =PPPPP31 + PPPPPB2 - PPPPPB3
PPNPPB1 Rl11 * (C5P2 * ((CiP * C23PN * C4P2) + (SiP * S4P2))
$- (CIP S 23PN i 5P2))
PPNPPB2 R 21 * (C5P2 ((SiP * C23PN * C4P2) - (CiP * S4P2))
S -(Si *S23PN * W2)*

PPNPPB3 =R31 * ((S23Pi* C4P2 * C5P2) + (C23PN * S5P2))
PPNPPB =PPNPPB1 + PPNPPB2 - PPNPPB3

C COMPUTE THE HAND ROLL ANGLE USING THE ARCTAN2 FUNCTION
A6P1 = ATAN2 (PPPPPA,PPPPPB)
A6P2 = ATAN2 (PPNPPA,PPNPPB)
RETURN
END

CCC
C RADIAN TO DEGREE CONVERSION ROUTINE

SUBROUTINE RADEG (RADi ,RAD2 ,DEG1 DEG2)
REAL RAD1,RAD2,D EGi,DEG2,PI

C INITIALIZE LOCAL VARIABLES AND RETURNED VALUES
DEGi = 0.0
DEG2 = 0.0

C DECLARE CONSTANTS
PI = 3.141592653589792

C PERFORM CONVERSION
DEGI = RADI* 180.0 /PI
DEG2 = RAD2 *180.0 /PI
RETURN
END

CCC

174

C CHECK FOR VALIDITY OF SOLUTIONS
SUBROUTINE VALID(A)
REAL A(4,7)
INTEGER IJ

C CHECK FOR VALIDITY ON ALL JOINTS.IF OUT OF RANGE, SET COLUMN 1 = 1.0
C NOTE THAT THE RANGES ARE OFFSET BY 0.01 DEGREES TO TAKE CARE
C OF COMPUTATIONAL ERRORS CAUSED BY THE MACHINE.

DO 200 I = 1,4
C WAIST RNGEG IS +/- 147 DEGREES

IF(BS((I,2) .GT. 147.01 .OR.
C SHOULDER RAGE IS +56 TO -236 DEGREES

s ((A(I,3).GT. 56.01) .OR. (A(I,3) .LT. -236.01)) .OR.
C ELBOW RAN0E IS THE SAME AS THE SHOULDER RANGE

s ((A(1,4) .GT. 56.01).OR. (A(1,4) .LT. -236.01)) .OR.
C WRIST ROLL IS CONTINUOUS. RNGE IS +/- 360 DEGREES

s ABS(A(I,5) .GT. 360.01) .OR.
C WRIST PITCH IS +/- 90 DEGREES

$ ABS(A(1,6) .GT. 90.01) .OR.
C HAND ROLL IS CONTINUOUS. RANGE IS +/- 360 DEGREES

$ ABS(A(I,7) .GT. 360.01)) THEN
C IF OUT OF RANGE, SET FLAG (COLUMN 1 OF RESPECTIVE ROW) = 1.0

EN1AF) = 1.0
ENDIF

200 CONTINUE
RETURN
END

CCC
C NORMALIZE THE COMPUTED RESULTS SO THAT EACH ANGLE RANGES
C FROM -180.0 TO 180.0 DEGREES

SUBROUTINE NORMAL(A)
REAL A(4,7)
INTEGER I,J

C NORMALIZE THE ANGLES TO BETWEEN -180 AND +180 DEGREES
DO 7011 = 1,4

DO 701J = 2,7
IF(A(I,J) GT. 180.0) THEN
A(IJ) = A(I J) - 360.0
ELSEI (A(I,J) .LT. -180.0) THEN
A(1,J) = A(I,J) + 360.0
EkDIF

701 CONTINUE
RETURN
END

CC

DATAFILE ROOM.DAT

2

00000000
00000000
00000000

1750 0

144 144 144 144 0 0 0 0
90 90 0 0 90 90 0 0
108 0 108 0 108 0 108 0

000
000

-72 -45 -54
000

DOCUMENTED DATA FILE ROOM.DOC

CcCCcCCcCCCCCCccC
WARNING:

THIS FILE SERVES AS A DOCUMENTATION FOR THE DATA FILE USED TO
DRAW THE ROOM THAT WILL CONTAIN THE MERLIN ROBOT.
IT IS NOT TO BE USED FOR THE ACTUAL DRAWING.

CCC
THE FIRST NUMBER TELLS THE HOST PROGRAM HOW MANY LINKS COMPOSE
THE SYSTEM THAT IS TO BE READ.

2
CCC
EACH LINK IN EACH SYSTEM OF THE CURRENT DRAWING ROUTINE USED IS AN
OBJECT DEFINED BY EIGHT POINTS IN 3D SPACE.

THE FIRST ROW OF NUMBERS IS VALUES OF 'X' FOR THE EIGHT POINTS.
THE SECOND ROW IS FOR THE 'Y' VALUES. THE THIRD ROW IS FOR 'Z' VALUES.

THE ORDER OF THE POINTS IS IMPORTANT.

6 2

8 -4

II

7 -3

IN THE PROGRAM, THE POINTS ARE CONNECTED IN THE FOLLOWING ORDER

1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3

176

THIS TRACES OUT THE FIGURE(WHICH NEED NOT BE A CUBE).
SOlE LINES ARE RETRACED.
IN DISSPLA, THIS IS THE MOST EFFICIENT METHOD OF DRAWING THE OBJECT.

THE FIRST LINK IN THE DATA FILE IS BLANK, IT IS AN ORIENTATION LINK.
00000000
00000000
00000000

THIS IS TIE SET OF POINTS THAT DEFINE THE CORNERS OF THE ROOM.
144 144 144 144 0 0 0 0
90 90 0 0 90 90 0 0

108 0 108 0 108 0 108 0

CC
THE FOLLOWING NUMBERS DEFINE THE TRANSLATION VECTOR AND ORIENTATION
VECTOR OF A LINK WITH RESPECT TO THE PREVIOUS LINK.
THEY ARE DEFINED AS X,Y,A COORDINATE VALUES.

THE FIRST IS BLANK, IT IS AN ORIENTATION VECTOR.
000
000

TEESE VECTORS PLACE THE BACK LEFT BOTTOM CORNER OF THE ROOE WITH
RESPECT TO THE ORIGIN, WHICH IS CENTER OF THE SCREEN.
-72 -45 -54 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR
CC

DATAFILE EERL.DAT

10

00000o00
00000000
00000000

18.75 18.75 18.75 18.75 -18.75 -18.75 -18.75 -18.75
4.1 4.1 0 04.1 4.1 0 0
18.75 -18.75 18.75 -18.75 18.75 -18.75 18.75 -18.75

-3.12 -3.12 -3.12 -3.12 3.12 3.12 3.12 3.12
-27.9 -27.9 0 0 -27.9 -27.9 0 0
3.12 -3.12 3.12 -3.12 3.12 -3.12 3.12 -3.12

-20.3 -20.3 -20.3 -20.3 7.0 7.0 7.0 7.0
9.0 -9.0 9.0 -9.0 9.0 -9.0 9.) -9.0
4.9 4.9 -14.4 -14.4 4.9 4.9 -14.4 -14.4

-15 -15 -15 -15 3 3 3 3
-4 -4 4 4 -3 -3 3 3
3 -3 3 -3 3 -3 3 -3

177

-3 -3 -3 -3 20.3 20.3 20.3 20.3
-3 -3 3 3 -3 -3 3 3
3 -3 3 -3 3 -3 3 -3

3 3 -3 -3 3 3 -3 -3
-14 -14 -14 -14 17.2 17.2 17.2 17.2
3 -3 3 -3 3 -3 3 -3

0 00 00 00 0
0 00 00 00 0
0 00 00 00 0

0 00 00 00 0
0 00 00 00 0
0 00 00 00 0

0 00 00 00 0
0 0 0 oo00o0

0 00 00 00 0

00 0
00 0

40 0 54
00 0

0 4.1 0
0 0 3.1416

0 -42.35 0
1.5708 0 0

0 12 0
-1.5708 0 0

00 6
0 00(

17.3 0 -6
0 0 -1.5708

0 17.2 0
-1.5708 0 0

00 0
1.5708 0 0

00 0
-1.5708 0 0

178

DOCUMENTED DATA FILE MERL.DOC

ccCccccCccccCCCC CCCCccccccCCcccccccCCcCCCccCCccccccCCCCCCCCCCcCC
VARNING:
THIS FILE SERVES AS A DOCUMENTATION FOR THE DATA FILE USED TO DRAW THE
MERLIN ROBOT. IT IS NOT TO BE USED FOR THE ACTUAL DRAWING.

DOCUMENTED DATA FILE:-
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC'CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
THE FIRST NUMBER TELLS THE HOST PROGRAM HOW MANY LINKS COMPOSE THE
SYSTEM THAT IS TO BE READ.
10

CCCCCCCCCcCCCCCCCCCcCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCcCCCCcCCCCCCCCCcCC
THE FIRST LINK IN THE DATA FILE MUST BE A BLANK LINK IF THE SYSTEM IS TO
BE APPENDED TO ANOTHER SYSTEM (THE ROBOT IS GOING TO BE PLACED IN THE
ROOM, WHICH IS ITS OWN SYSTEM).

00000000
00000000
00000000

CCC
EACH LINK IN EACH SYSTEM OF THE CURRENT DRAWING ROUTINE USED IS AN
OBJECT DEFINED BY EIGHT POINTS IN 3D SPACE.

THE FIRST ROW OF NUMBERS IS VALUES OF 'X' FOR THE EIGHT POINTS.
THE SECOND ROW IS FOR THE 'Y' VALUES. TilE THIRD ROW IS FOR 'Z' VALUES.

THE ORDER OF THE POINTS IS IMPORTANT.

6 -

// I//
7 3

IN THE PROGRAM, THE POINTS ARE CONNECTED IN THE FOLLOWING ORDER
1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3

THIS TRACES OUT THE FIGURE(WH1CH NEED NOT BE A CUBE). SOME LINES ARE
RETRACED. IN DISSPLA, THIS IS THE MOST EFFICIENT METHOD OF DRAWING THE
OBJECT.

THIS IS THE SET OF POINTS REPRESENTING THfE BASE SUPPORT.
18.75 18.75 18.75 18.75 -18.75 -18.75 -18.75 -18.75
4.1 4.1 0 04.1 4.1 0 0
18.75 -18.75 18.75 -18.75 18.75 -18.75 18.75 -18.75

179

THIS IS THE SET OF POINTS REPRESENTING THE COLUMN BETWEEN THE BASE k THE
MOTOR HOUSING.
-3.12 -3.12 -3.12 -3.12 3.12 3.12 3.12 3.12
-27.9 -27.9 0 0 -27.9 -27.9 0 0
3.12 -3.12 3.12 -3.12 3.12 -3.12 3.12 -3.12

THIS IS THE SET OF POINTS REPRESENTING THE VAIST AND MOTOR HOUSING.
-20.3 -20.3 -20.3 -20.3 7.0 7.0 7.0 7.0
9.0 -9.0 9.0 -9.0 9.0 -9.0 9.0 -9.0
4.9 4.9 -14.4 -14.4 4.9 4.9 -14.4 -14.4

THIS IS THE SET OF POINTS REPRESENTING THE COUNTERWEIGHT OF SHOULDER.
-15-15-15-15 3 3 3 3
-4 -4 4 4 -3 -3 3 3
3 -3 3 -3 3 -3 3 -3

THIS IS THE SET OF POINTS REPRESENTING THE UPPER ARM.
-3 -3 -3 -3 20.3 20.3 20.3 20.3
-3 -3 3 3 -3 -3 3 3
3 -3 3 -3 3 -3 3 -3

THIS IS THE SET OF POINTS REPRESENTING THE LOVER ARI.
THE COUNTERWEIGHT IS INCLUDED IN THIS DATA SET.
3 3 -3 -3 3 3 -3 -3
-14 -14 -14 -14 17.2 17.2 17.2 17.2
3 -3 3 -3 3 -3 3 -3

THIS IS THE SET OF POINTS REPRESENTING THE WRIST ROLL. IT IS BLANK
BECAUSE IT HAS NO PHYSICAL DIMENSIONS, BUT BECAUSE OF THE WAY THE
PROGRAM IS SET UP, THE LINK MUST HAVE DIMENSIONS EVEN IF THEY ARE ZERO.
00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE WRIST PITCH.
00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE HAND ROLL.
00000000
00000000
00000000

CC
THE FOLLOWING NUMBERS DEFINE THE TRANSLATION VECTOR AND ROTATION VECTOR
OF A LINK WITH RESPECT TO THE PREVIOUS LINK.

THE FIRST SET MUST BE BLANK SO THAT THE MERLIN CAN BE APPENDED TO THE
ROOM.

THE ZEROES WILL BE REPLACED IN THE PROGRAM WITH THE VECTORS OF THE LAST
LINK OF THE SYSTEM TO BE APPENDED TO.

180

0 0 0 - TRANSLATION VECTOR
0 0 0 - ROTATION VECTOR

THIS IS THE TRANSLATION VECTOR OF THE BASE.
THEY ARE DEFINED AS X,Y,Z COORDINATES OF THE BOTTOM CENTER OF THE BASE
WITH RESPECT TO THE FAR LEFT LOVER CORNER OF THE ROOK.
IN THE PROGRAI, WHEN THE ROBOT IS TO BE REPOSITIONED, THESE NUMBERS WILL
BE CHANGED BY THE USER. THE DEFAULT IS SEf TO [54,0,54]

THESE ARE THE VECTORS OF THE ROBOT'S BASE WITH RESPECT TO THE ROOM.
54 0 54 - TRANSLATION VECTOR
0 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S COLUkN WITH RESPECT TO THE BASE.
0 4.1 0 - TRANSLATION VECTOR
0 0 3.1416 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S WAIST WITH RESPECT TO THE COLUMN.
0 -42.35 0 - TRANSLATION VECTOR
1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S COUNTERWEIGf' WITH RESPECT TO THE
WAIST.
0 12 0 - TRANSLATION VECTOR
-1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S UPPER ARM WITH RESPECT TO THE
SHOULDER COUNTERWEIGHT.
0 0 6 - TRANSLATION VECTOR
0 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S LOWER ARM WITH RESPECT TO THE UPPER
ARM.
17.3 0 -6 - TRANSLATION VECTOR
0 0 -1 708 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S WRIST kOLL WITH RESPECT TO THE
LOWER ARM.
0 17.2 0 - TRANSLATION VECTOR
-1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S WRIST PITCH WITH RESPECT TO THE
WRIST ROLL.
0 0 0 - TRANSLATION VECIOR
1.5708 0 0 - ROTATION VECTOR

THESE ARE THE VECTORS OF THE ROBOT'S HANDI .iii! K'ESPLCI TO THE WRIST
PITCH.
0 0 0 - TRANSLATION VECTOR
-1.5708 0 0 - ROTATION VECiOR
CCCCCCCCCCCCCCCCCCCCCCCCCCC(CCC;CC(1 CCC(CC:(LC :CCC(CCCCCCCCC(CCCCCCCC

181

DATAFILE UTAH.DAT

4

00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

1.8 -1.9 1.8 -1.9 1.8 -1.9 1.8 -1.94.25 4.25 4.25 4.25 0 0 0 0
.375 .375 1.5 -1.5 .375 .375 -. 375 -. 375

000
000

000
000

000-1.5708 0 3.1416

0000 1.5708 0

00000000
00000000
00000000

-. 5- .5.5.5 -. 5 -. 5 .5 .5
-. 5 .5 -. 5 .5 -. 5 .5 -. 5 .51.2 1.2 1.21.20000

1.7 1.7 1.71.70000
.45 .45 - .45 - .45 .45 .45 - .45 - .45
.45 - .45 .45 - .45 .45 - .45 .45 - .45

1.3 1.3 1.31.30000
•4 .4 -. 4 -. 4 .4 .4 -. 4 -. 4
•4 4-.4 .4 - .4 .4 -. 4 .4 -. 41.0625 1.0625 1.0625 1.0625 0 0 0 0
-35 .35 - .35 -. 35 .35 .35 -. 35 -. 35
.35 -. 35 .35 -.35 .35 -. 35 .35 -. 35

182

1. 1. 1. 1.I

000
000

-1.375 4.25 -.75
-1.34 0 1.5708

0 0 1.2
1.5708 0 1.5708
1.7 0 0000

1.3 0 0
000

5

00000000
00000000
00000000

--5 -. 5 .5 .5 -. 5 -. 5 .5 .5-. 5 .5 -. 5 .5 -. 5 .5 -. 5 .5

1.2 1.2 1.2 1.2 0 0 0 0

1.7 1.7 1.7 1.7 0 0 0 0
.45 .45 -.45 -.45 .45 .45 -.45 -.45
.45 -.45 .45 -.45 .45 -.45 .45 -.45

1.3 1.3 1.3 1.3 0 0 0 0
.4 .4 -. 4 -. 4 .4 .4 -. 4 -. 4
.4 -.4 .4 -.4 .4 -.4 .4 -.4

1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 .35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

000
000

.10 4.25 .75
-1.34 0 1.5708

0 0 1.2
1.S708 0 1.5708

1.7 0 0
000

1.3 0 0
000

5

1 83

00000000
00000000
00000000

-. 5 -.5 .5 .5 -. 5 -.5 .5 .5
-.5 .5 -.5 .5 -.5 .5 -.5 .5
1.2 1.2 1.2 1.2 0 0 0 0

1.7 1.7 1.7 1.7 0 0 0 0
.45 .45 -.45 -.45 .45 .45 -.45 -.45
.45 -.45 .45 -.45 .45 -.45 .45 -.45

1.3 1.3 1.3 1.3 0 0 0 0
.4 .4 -. 4 -.4 .4 .4 -. 4 -. 4
.4 -. 4 .4 -. 4 .4 -. 4 .4 -. 4

1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

000
000

1.1875 4.25 -.75
-1.34 0 1.5708

0o0 1.2
1.5708 0 1.5708

1.7 0 0000

1.3 0 0000

5

00000000
00000000
00000000

00000000
00000000
00000000
1.7 1.7 0 0 1.7 1.7 0 0

.5 .5 .5 .5 - .5 - .5 - .5 - .5
-. 5 .5 - .5 .5 - .5 .5 - .5 .5

1.3125 1.3125 0 0 1.3125 1.3125 0 0
.4 .545 .45 .45 -.45 -.45 -. 45 -. 45

-.45 .45 -.45 .45 -.45 .45 -.45 .45

184

1.125 1.125 0 0 1.125 1.125 0 0
.4 .4 .4 .4 -. 4 -. 4 -. 4 -. 4
-.4 .4 -.4 .4 -.4 .4 -.4 .4

000
000

.75 3.125 0
-1.5708 0 -1.5708

.375 0 0
1.5708 0 0

1.7 0 0
000

1.3125 0 0
000

.375 .375 -.375 -.375 .375 .375 -.375 -.375
3.875 3.875 3.875 3.875 0 0 0 0
-1.9 1.8 -1.9 1.8 -1.9 1.8 -1.9 1.8

DOCUMENTED DATA FILE UTAH.DOC

CCCCCcCCCcCcCCCcCCCCcCCCCCCCCcccCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCc
YARNING:
THIS FILE SERVES AS A DOCUMENTATION FOR THE DATA FILE USED TO DRAW
THE UTAH HAND. IT IS NOT TO BE USED FOR THE ACTUAL DRAWING.

DOCUMENTED DATA FILE:-
CCCCCcCCcCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCcCCCCCCCCCCCCCCCCCCCC

THE FIRST NUMBER TELLS THE HOST PROGRAM HOW MANY LINKS COMPOSE
THE SYSTEE THAT IS TO BE READ.

4

CCccccc
THE FIRST LINK IN THE DATA FILE OF SYSTEM MUST BE A BLANK LINK IF THE
SYSTEM IS TO BE APPENDED TO ANOTHER SYSTEI(THE HAND IS GOING TO BE
PLACED ON THE KERLIN ROBOT).

00000000
00000000
00000000

CC
TIE SECOND LINK IN THE DATA FILE FOR TIE HAND lUST BE A BLANK.
IN TIE PIOCRAlN, TIE USER lAS TIE OPTION OF REPOSITIONING THE HAND.

185

0.. 0- 0mmnmmunl 0] 0 0 0n0

TO MAKE THIS POSSIBLE, A BLANK LINK IS REQUIRED.

00000000
00000000
00000000

CCCCCCCCCCCCCCcCCCCCCcCCCCCCCcCcCCCCcCCCCCCCCcCCCCCCCCCcCCCccCCCC

THE THIRD LINK IN THE DATA FILE FOR THE HAND MUST BE A BLANK. THIS IS
NECESSARY TO ACHIEVE PROPER ORIENTATION OF THE HAND.

00000O00
00000000
00000000

CC

EACH LINK IN EACH SYSTEM OF THE CURRENT DRAVING ROUTINE USED IS AN
OBJECT DEFINED BY EIGHT POINTS IN 3D SPACE.

THE FIRST ROY OF NUMBERS IS VALUES OF '1' FOR THE EIGHT POINTS.
THE SECOND ROY IS FOR THE 'Y' VALUES. THE THIRD ROY IS FOR 'Z' VALUES.

THE ORDER OF THE POINTS IS IMPORTANT.

6 2

//
/ /

IN THE PROGRAM, THE POINTS ARE CONNECTED IN THE FOLLOVING ORDER
1,2,4,3,7,5,6,2,6,8,4,8,7,5,1,3

THIS TRACES OUT THE FIGURE(WHICH NEED NOT BE A CUBE). SOME LINES ARE
RETRACED. IN DISSPLA, THIS IS THE MOST EFFICIENT METHOD OF DRAVING THE
OBJECT.

CC
THIS IS THE SET OF POINTS REPRESENTING THE PALM SECTION.
1.8 -1.9 1.8 -1.9 1.8 -1.9 1.8 -1.9
4.25 4.25 4.25 4.25 0 0 0 0
.375 .375 -1.5 -1.5 .375 .375 -.375 -.375

CC
THE FOLLOVING NUMBERS DEFINE THE TRANSLATION VECTOR AND ROTATION VECTOR
OF THAT LINK VITH RESPECT TO THE PREVIOUS LINK. THEY ARE DEFINED AS
X,Y,Z COORDINATE VALUES.

THE FIRST MUST BE BLANK IF IT IS TO APPENDED TO ANOTHER SYSTEM
THE ZEROES VILL BE REPLACED IN THE PROGRAM WITH THE VECTORS OF THE LAST

186

LINK OF TIE SYSTEH TO BE APPENDED TO.
o 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

TIE SECOND MUST BE BLANK TO ALLOW FOR REPOSITION OF THE HAND.
TIE ZEROES VILL BE REPLACED IN THE PROGAM WITH THE VECTORS THAT DEFINE
THE REPOSITIONING OF TIE HAND.
o 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

THESE ARE THE TRANSLATION AND ROTATION VECTORS OF SECOND AND THIRD EMPTY
LINKS.
0 0 0 TRANSLATION VECTOR
-1.57 0 3.14 ROTATION VECTOR

THESE ARE VECTORS OF THE PALI WITH RESPECT TO THE THIRD EMPTY LINK.
o 0 0 TRANSLATION VECTOR
0 1.5708 0 ROTATION VECTOR

CCC
NUMBER OF LINKS OF THE FIRST FINGER.
5

EMPTY LINK FOR APPENDING THE FIRST FINGER TO THE PALM.
00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.
-.5 -.5 .5 .5 -.5 -.5 .5 .5
-.5 .5 -.5 .5 -.5 .5 -.5 .5
1.2 1.2 1.2 1.2 0 0 0 0

THIS IS THE SET OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.7 1.7 1.7 1.7 0 0 0 0
.45 .45 -.45 -.45 .45 .45 -.45 -.45
.45 -.45 .45 -.45 .45 -.45 .45 -.45

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.3 1.3 1.3 1.3 0 0 0 0
.4 .4 -.4 -.4 .4 .4 -.4 -.4
.4 -.4 .4 -.4 .4 -.4 .4 -.4

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.3b .35 -.35 .35 -.35 .35 -.35

EMPTY TRANSLATION AND ROTATION VECTORS FOR APPENDING TIE FTNGER TO TIE
HAND.
000
000

187

THESE AlE THE VECTORS OF THE ZEROTH LINK WITH RESPECT TO THE HAND.
-1.375 4.25 -.75 TRANSLATION VECTOR
-1.34 0 1.5708 ROTATION VECTOR

THESE ARE THE VECTORS OF THE FIRST LINK VITH RESPECT TO THE (ZERO)TH.
0 0 1.2 TRANSLATION VECTOR
1.5708 0 1.5708 ROTATION VECTOR

THESE ARE THE VECTORS OF THE SECOND LINK WITH RESPECT TO THE FIRST.
1.7 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

THESE ARE THE VECTORS OF THE THIRD LINK WITH RESPECT TO THE SECOND.
1.3 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

CC
NUMBER OF LINKS OF THE SECOND FINGER.
5

EMPTY LINK FOR APPENDING THE SECOND FINGER TO THE PALl.
00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.
-.5 -.5 .5 .5 -.5 -.5 .5 .5
-.5 .5 -.5 .5 -.5 .5 -. 5 .5
1.2 1.2 1.2 1.2 0 0 0 0

THIS IS THE SET OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.7 1.7 1.7 1.7 0 0 0 0
.45 .45 -.45 -.45 .45 .45 -.45 -.45
.45 -.45 .45 -.45 .45 -.45 .45 -.45

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.3 1.3 1.3 1.3 0 0 0 0
.4 .4 -. 4 -.4 .4 .4 -.4 -.4
.4 -.4 .4 -.4 .4 -.4 .4 -.4

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

EMPTY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE FINGER TO THE
HAND.
000
000

THESE ARE THE VECTORS OF THE (ZERO)TV LINK WITH RESPECT TO THE HAND.
-.10 4.25 -.75 TRANSLATION VECTOR
-1.34 0 1.5708 ROTATION VECTOR

188

THESE ARE TIE VECTORS OF THE FIRST LINK WITH RESPECT TO THE (ZERO)TH.
0 0 1.2 TRANSLATION VECTOR
1.5708 0 1.5708 ROTATION VECTOR

THESE AE TIE VECTORS OF TIE SECOND LINK WITH RESPECT TO THE FIRST.
1.7 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

THESE ARE TIE VECTORS OF THE THIRD LINK WITH RESPECT TO THE SECOND.
1.3 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

CC
NUBER OF LINKS OF THE THIRD FINGER.
5

EMPTY LINK FOR APPENDING THE THIRD FINGER TO THE PALE.
00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.
-.5 -.5 .5 .5 -.5 -.5 .5 .5
- .5 .5 - .5 .5 - .5 .5 - .5 .5
1.2 1.2 1.2 1.2 0 0 0 0

THIS IS THE SET OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.7 1.7 1.7 1.7 0 0 0 0
.45 .45 -.45 -.45 .45 .45 -.45 -.45
.45 -.45 .45 -.45 .45 -.45 .45 -.45

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.3 1.3 1.3 1.3 0 0 0 0
.4 .4 -.4 -.4 .4 .4 -.4 -.4
.4 -.4 .4 -.4 .4 -.4 .4 -.4

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.0625 1.0625 1.0625 1.0625 0 0 0 0
.35 .35 -.35 -.35 .35 .35 -.35 -.35
.35 -.35 .35 -.35 .35 -.35 .35 -.35

EIPTY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE FINGER TO THE
HAND.
000
000

THESE ARE THE VECTORS OF THE (ZERO)TH LINK WITH RESPECT TO THE HAND.
1.1875 4.25 -.75 TRANSLATION VECTOR
-1.34 0 1.5708 ROTATION VECTOR

THESE ALE THE VECTORS OF THE FIRST LINK WITH RESPECT TO THE (ZERO)TH.
0 0 1.2 TRANSLATION VECTOR
1.5708 0 1.5708 ROTATION VECTOR

189

THESE ARE THE VECTORS OF THE SECOND LINK WITH RESPECT TO THE FIRST.
1.7 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

THESE ARE THE VECTORS OF THE THIRD LINK WITH RESPECT TO THE SECOND.
1.3 0 0 TRANSLATION VECTOR
0 0 0 ROTATION VECTOR

CC
NUMBER OF LINKS OF THE THUMB.
5

EMPTY LINK FOR APPENDING THE THUMB TO THE PALM.
00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE (ZERO)TH LINK SECTION.00000000
00000000
00000000

THIS IS THE SET OF POINTS REPRESENTING THE FIRST LINK SECTION.
1.7 1.7 0 0 1.7 1.7 0 0
.5 .5 .5 .5 -.5 -.5 -.5 -.5
-.5 .5 -.5 .5 -.5 .5 -.5 .5

THIS IS THE SET OF POINTS REPRESENTING THE SECOND LINK SECTION.
1.3125 1.3125 0 0 1.3125 1.3125 0 0
.45 .45 .45 .45 -.45 -.45 -.45 -.45
-.45 .45 -.45 .45 -.45 .45 -.45 .45

THIS IS THE SET OF POINTS REPRESENTING THE THIRD LINK SECTION.
1.125 1.125 0 0 1.125 1.125 0 0
.4 .4 .4 .4-.4-.4-.4-.4
-.4 .4 -.4 .4 -.4 .4 -.4 .4

EMPTY TRANSLATION AND ROTATION VECTORS FOR APPENDING THE THUMB TO THE
HAND.
000
000

THESE ARE THE VECTORS OF THE (ZERO)TH LINK WITH RESPECT TO THE HAND.
.75 3.125 0 TRANSLATION VECTOR
-1.5708 0 -1.5708 ROTATION VECTOR

THESE ARE THE VECTORS OF THE FIRST LINK WITH RESPECT TO THE (ZERO)TH
LINK.
.375 0 0 TRANSLATION VECTOR
1.5708 0 0 ROTATION VECTOR

190

TIESE 11B TIE VECTORS OF THE SECOND LINK VITH RESPECT TO THE FIRST.
1.7 0 0 TRANSLATION VECTOR
0 0 0 ROTITION VECTOR

THESE Al TIE VECTORS OF THE THIRD LINK VITH RESPECT TO TIE SECOND.
1.3125 0 0 TRANSLATION VECTOR
0 o 0 ROTATION VECTOR

191

REFERENCES

1) Robert D. Ballard, "A Long Last Look at it4nftc", National
Geographic, Volume 170, Number 6, pp. 698-727. December 1986.

2) C. I. Veisbin, "Robotics and Intelligent Systems Program",
Informational report published by the Oak Ridge National
Laboratory, Oak Ridge, Tennessee. 1987

3) Ichiro Kato, Kuni Sadamoto, "Mechanical lands Illustrated",
Hemisphere Publishing Corp. 1987.

4) Jean Vertut, Philippe Coiffet, "Teleoperation and Robotics -
Evolution and Development", Volumes 3A and 3B. Prentice Hall, Inc.
1985.

5) John J. Craig, "Introduction to Robotics - Mechanisms and Control",
Addison-Vesley Publishing Co., Reading, Massachusetts. 1986.

6) Bernard Roth, "Performance Evaluation of Manipulators from a
Kinematic Viewpoint", National Bureau of Standards Workshop on
Performance Evaluation of Manipulators, Annapolis, Maryland.
October 23 - 25, 1975.

7) J. Denavit, R. S. Hartenburg, "A Kinematic Notation for Lower-Pair
Mechanisms based on Matrices", ASIE Journal of Applied lechanics,
Vol 22(2), pp. 215 - 221. 1955.

8) Ierlintm System Operators Guide, Version 3.0, American Robot Corp.
June 1985.

9) A. Kumar, K. J. Waldron, "The Workspaces of a lechanical
lanipulator", Journal of lechanical Design, Volume 103, pp. 665 -
672. July 1981.

10) J. A. Hansen, K. C. Gupta, S. X. K. Kazerounian, "Generation and
Evaluation of the Vorkspace of a Manipulator", The International
Journal of Robotics Research, Volume 2, No. 3. Fall 1983.

11) T. W. Lee, D. C. I. Yang, "On the Evaluation of Manipulator
Workspaces", Transactions of the ASIE - Journal of lechanisms,
Transmissions and Automation Design, Vol. 105. larch 1983.

12) J. K. Salisbury, "Kinematics and Force Analysis of Articulated
Hands", Ph. D. Thesis, Department of lechanical Engineering,
Stanford University. lay 1982.

13) S. Narasimhan, "Dexterous Robotic lands: Kinematics and Control",
M.S. Thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology. January 1988.

14) S. C. Jacobsen, J. E. Wood, D. F. Knutti, K. B. Biggers, "The
VTAH/lIT Dexterous land: York in Progress", International Journal

192

of lobotics Research, Volume 3, No. 4, pp. 21 - 50. Vinter 1984.

15) S. C. Jacobsen, E. I. Iversen, D. F. Knutti, R. T. Johnson, K. B.
Biggers, "Design of the UTAH/lIT Dexterous land", Proc. IEEE
International Conference on Robotics and lutomation, San Francisco,
California. April 7 - 10, 1986

193' *U.S.Government Printing Office: 1989 - 648-055/02007

